PLAN DE CONTINUIDAD Y APOYO PARA ALUMNOS DE CUARTO SEMESTRE

JUNIO 2020
1. Presentación

En el marco de educación a distancia, surge como propuesta el “Plan de continuidad y apoyo para alumnos de Cuarto Semestre”, con fines de seguimiento en la formación académica de los alumnos de 2º a 5º Semestre del Colegio de Bachilleres de Chiapas.

Está diseñado para aplicarse en las asignaturas correspondientes al Cuarto Semestre del mapa curricular de los programas vigentes de la DGB, así como para el Colegio de Bachilleres de Chiapas y sus modalidades.

2. Importancia y definición

La finalidad de este material es que los estudiantes continúen con su formación académica, apoyándose en las herramientas que proporcionan las TIC, ante la imposibilidad del regreso a las aulas de manera presencial, como medida de prevención por la pandemia de COVID-19. También como un precedente para futuros diseños.

El Colegio de Bachilleres de Chiapas con el apoyo de docentes y de personal del Departamento de Capacitación y Profesionalización Docente, implementa este recurso metodológico para la comunidad escolar, para que el estudiante logre cumplir con los propósitos de las asignaturas, por lo que está orientado a temas del semestre, de tal forma que el alumno pueda obtener los conocimientos necesarios, utilizando los recursos con los que él cuenta y de los que puede disponer con ayuda de la tecnología.

3. Antecedentes

En esta primera experiencia nos parece muy enriquecedor elaborar este tipo de material para el alumnado y nuestra formación docente, pues permite coadyuvar en la situación actual y a su vez, tener un reto colaborativo y enriquecedor.

4. Objetivos

Brindar elementos de apoyo para el Cuarto Semestre, que permitan abordar los contenidos esenciales, cumpliendo con los Planes y Programas de Estudios establecidos por la DGB.
5. Índice de Contenidos

1. Presentación .. 2
2. Importancia y definición ... 2
3. Antecedentes ... 2
4. Objetivos .. 2
6. Desarrollo de contenidos ... 5
Matemáticas IV .. 5
 III. Funciones polinomiales ... 5
Funciones polinomiales de grado uno y las particularidades de los modelos lineales y cuadráticos.. 8
Biología II ... 11
 IV. Evolución biológica .. 11
Física II .. 19
 III Termología ... 19
 El calor y la temperatura ... 22
IV. Electricidad .. 32
 Historia de la electricidad ... 32
Literatura II .. 43
 Su origen y desarrollo .. 43
Bloque VI .. 50
 Representas el arte teatral en tu comunidad ... 50
Historia de México II .. 62
 Gobiernos posrevolucionarios ... 62
Formación para el trabajo: Tecnologías de la Información y Comunicación 69
Mantenimiento y Redes de Cómputo .. 69
 Mantenimiento preventivo y correctivo de computadoras ... 82
7. Recursos didácticos ... 88
Matemáticas IV .. 88
 Biología II ... 88
 Física II ... 88
 Literatura II .. 89
 Formación para el trabajo: Tecnologías de la Información y Comunicación 90
8. Elementos de confirmación de conocimientos ... 91
Matemáticas IV .. 91
Figura 7. Función g(x) = .. 91
 Ejemplo 2 ... 95
 Ejemplo 3 ... 96
 Biología II ... 98
 Teorías evolutivas ... 98
6. Desarrollo de contenidos

Matemáticas IV
III. Funciones polinomiales

Funciones polinomiales de grados cero, uno y dos

A una función p se le llama polinomio si

\[p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_2 x^2 + a_1 x + a_0 \]

Donde un entero no negativo y los números \(a_0, a_1, a_2, \ldots, a_n \) son constantes se conocen como coeficientes del polinomio. El dominio de cualquier polinomio es \(\mathbb{R} = (-\infty, \infty) \). Si el coeficiente principal \(a_n \neq 0 \), entonces el grado del polinomio es \(n \).

Por ejemplo, la función

\[P(x) = 2x^6 - x^4 + \frac{2}{3} x^3 + \sqrt{2} \]

Es un polinomio de grado 6.

Un polinomio de grado 1 tiene la forma \(P(x) = mx + b \) y de este modo es una función lineal. Polinomio de grado 2 tiene la forma \(P(x) = ax^2 + bx + c \) se le llama función cuadrática. Su gráfica es siempre una parábola que se obtiene, al cambiar la parábola \(y = ax^2 \). La parábola se abre hacia arriba si \(a > 0 \) y hacia abajo si \(a < 0 \).

Un polinomio de grado 3 tiene la forma

\[P(x) = ax^3 + bx^2 + cx + d \quad a \neq 0 \]

Y se le da el nombre de función cúbica. En la siguiente figura se muestra la gráfica de una función cúbica en la parte (a) y gráfica de polinomios de grados 4 y 5 en las partes (b) y (c). Más adelante se verá por qué las gráficas tienen las formas que se ilustran en este momento.
Características de las funciones polinomiales

El grado de un polinomio está dado por el mayor exponente de la variable en el polinomio, independientemente del orden en el que estén los términos, como se muestra en las siguientes funciones:

1. \(f(x) = 7 \) Es de grado cero, se le conoce como función constante. Figura 1.

2. \(f(x) = 4x - 1 \) Es de grado uno, también conocida como función lineal. Figura 2.
3. \(f(x) = x^2 + 5x + 6 \) Es de grado dos, se le conoce como función cuadrática Figura 3.

![Figura 3. Función Cuadrática](image)

4. \(f(x) = 4x^2 + 5x^3 + 1 \) Es de grado tres y se le conoce como función cúbica Figura 4.

![Figura 4. Función cúbica](image)

5. \(f(x) = 4x^4 + 3x^3 + 2x^2 + 1 \) Es de grado cuatro y se le conoce como función cuártica. Figura 5

![Figura 5. Función cuártica](image)

El dominio de una función Polinomial es el conjunto de los números reales; sin embargo,
el rango en algunos casos no lo es. Para entender esto, se requiere analizar las funciones hasta encontrar la generalidad, por ejemplo: en la función de grado cero (función constante), el rango es el conjunto que tiene como único elemento la misma constante por la cual está definida; la función de grado uno (función lineal) y la función de grado tres (función cúbica) tienen como rango el conjunto de los números reales; la función grado dos (función cuadrática) y la función de grado cuatro (función cuártica) tienen como rangos una parte de los números reales, a esa parte se le conoce como subconjunto.

Si una función es impar (grado impar) el rango de la función es el conjunto de los números reales; si una función es par (grado par), el rango de la función es un subconjunto de los números reales.

Influencia de los parámetros de funciones de grado cero, uno y dos en su representación gráfica.

La función constante. La función de grado cero es la que se conoce como función constante, ésta es un caso particular de la función Polinomial y se inició con ella en el primer bloque; su forma es:

\[f(x) = a \]

Donde “a” es una constante

Su gráfica es una recta paralela al eje X y corta al eje Y en el punto (0, a).

Funciones polinomiales de grado uno y las particularidades de los modelos lineales y cuadráticos.

La función lineal. La ecuación lineal en su forma pendiente-ordenada en el origen es:

\[y = mx + b \]

Donde \(m \) es la pendiente de la recta y \(b \) es la ordenada del origen. Vista como una función se representa de la siguiente manera:

\[f(x) = mx + b \]

Donde

\(b \) es la constante que indica el lugar donde la recta cruza el eje y, además se le denomina término independiente.

\(m \) es la pendiente de la recta, la cual está relacionada con su inclinación, es el coeficiente de la variable.

\(x \) es la variable independiente.

En la siguiente figura se muestra la función de los parámetros antes mencionados.

La función cuadrática. Las funciones cuadráticas se caracterizan por su grado 2, éstas
se expresan en su forma general como \(f(x) = ax^2 + bx + c \), con la condición de que su coeficiente principal es diferente de cero \((a \neq 0)\) se compone de la siguiente manera:

- \(ax^2 \): Término cuadrático.
- \(bx \): Término lineal.
- \(c \): Término independiente.

Al igual que la ecuación cuadrática, la función cuadrática tiene la misma clasificación.

La clasificación de las ecuaciones cuadráticas depende de los términos que aparezcan en ellas.

Se les llama **completas** cuando poseen todos los términos, e incompletas cuando carecen de alguno. Si no tiene el término lineal se denominan **puras** y si no aparece el término independiente se conocen como **mixtas**.

En el siguiente cuadro sinóptico visualizarás su estructura.

Clasificación de las Funciones Cuadráticas

Funciones Completas:

\[
 f(x) = ax^2 + bx + c
\]

Funciones Incompletas

- **Funciones Puras:**
 \[
 f(x) = ax^2 + c
 \]

- **Funciones Mixtas:**
 \[
 f(x) = ax^2 + bx
 \]

Las gráficas de las funciones cuadráticas describen parábolas, como se muestra en la siguiente figura 10.
Figura 10. Gráfica de la función cuadrática

Cuando la función se iguala a cero, se produce una ecuación y los valores que la satisfacen se llaman **raíces** de la función.

Dependiendo del tipo de parábola (con ramas hacia abajo o ramas hacia arriba), el vértice es el punto mínimo o punto máximo, como se muestra en la siguiente figura 11.

Figura 11. Tipos de parábolas

Para observar cómo intervienen los parámetros en los cambios que sufre la gráfica, se tiene que reescribir la forma general de la función cuadrática a la forma estándar, la cual explicita el vértice y la abertura que tiene la parábola que describe.

Forma general de la función cuadrática.

\[f(x) = ax^2 + bx + c \]

Forma estándar de la función cuadrática.

\[f(x) = a(x - h)^2 + k \]

Donde

\(h \) y \(k \). Son las coordenadas del vértice.
Propósito

Deduces las teorías de la evolución natural y sintética como un proceso continuo, reflexionando y fomentando un pensamiento crítico sobre las evidencias que las sustentan.

En este último bloque temático te permitirá conocer cómo las especies logran su adaptación al medio para sobrevivir, cómo la evolución biológica se relaciona con la selección natural y artificial y además, podrás valorar la diversidad de los organismos que nos rodean.

El concepto de evolución se considera la piedra angular para el estudio de la Biología e implica un cambio notorio en los seres vivos a lo largo de la historia natural. Este cambio se tiene registrado desde la Prehistoria, cuando el hombre utilizó imágenes plasmadas en rocas, de ahí que podamos conocer numerosas especies que en nuestros días están extintas y de muchas más que se suman en hallazgos de organismos completos preservados en hielo, rocas o en el ámbar.

La evolución es un proceso que ha permitido a las especies adaptarse al medio en el que viven, de manera inicial se dan a nivel genético y a partir de eso cambian anatómica, fisiológica, embriológica y bioquimicamente, todo esto con la finalidad de sobrevivir; por lo tanto, la adaptación de las especies genera una gran biodiversidad.

Te habrás percatado que en los últimos años el clima ha cambiado, los días calurosos aumentan en grados, las noches se vuelven más frías, llueve mucho, etc., estos cambios climáticos impactan en casi todas las especies, lo que produce diversos grados de evolución.

Actividad 1. Primeras ideas de la evolución

Desde tiempos ancestrales y a lo largo de la historia han surgido preguntas sobre el origen de la vida y de las especies, así como la evolución de las mismas; al principio, las respuestas fueron en torno a la religión, donde se creía que todos los organismos fueron creados simultáneamente por Dios; sin embargo, en la Biología moderna los científicos han rechazado este principio fundamental basándose en ideas que han desarrollado a lo largo de la historia. En la figura 1.1 se exponen algunas ideas del desarrollo de la biología evolutiva moderna.

La evolución biológica es el conjunto de transformaciones continuas que han originado las diversas formas de vida, es decir, los cambios producidos de generación en generación en una población de individuos que puede llevar a la aparición de nuevas especies, a la adaptación a distintos ambientes o a la aparición de diferencias evolutivas.
La ciencia, antes de Darwin, quien estuvo influenciado por la teología, sostenía que todas las especies habían sido creadas por Dios y que toda forma de vida permanecía inalterable desde ese momento. Por su parte, Platón y Aristóteles (427-347 A.C), filósofos griegos, propusieron que todo objeto existente en la Tierra era un reflejo temporal simplemente de su forma ideal inspirada por esa divinidad. Aristóteles, además, clasificó todos los organismos en una jerarquía lineal a la que llamó: la escala de la naturaleza.

El asentamiento de culturas y la exploración de nuevos continentes dieron lugar a nuevas hipótesis en las cuales se discutía sobre esta inalterabilidad de las especies, la diversidad de tipos de organismos era más grande de lo que se pudieran imaginar. Así iniciaron a tomar nota de patrones, en cierta área geográfica, por ejemplo, se encontraban con especies diferentes a comparación de otra zona, así como grupos de especies similares dentro de una misma área.

Para el siglo XVIII, concluyeron que las especies habían cambiado a lo largo del tiempo, por ejemplo, Georges Louis LeClerc, mejor conocido como el conde de Buffon (1707-1788), sugirió que de la creación original había un grupo reducido de especies, pero que conforme había pasado el tiempo se habían producido otras mediante procesos naturales.

Poco después, con el descubrimiento de fragmentos de roca que parecían ser parte de organismos vivos encontrados durante excavaciones, se hizo evidente un avance en la Geología: los fósiles, que muchos pensaban que sólo eran producto del viento, el agua o del hombre, en realidad eran restos de organismos conservados a lo largo de mucho tiempo.

Algunos ejemplos de estos fósiles son huesos, conchas, insectos, huevos, heces fecales o huellas que se petrificaron y convirtieron en piedra (figura 1.2). Además, con esto se dieron cuenta que la Tierra está formada por capas, antiguas (abajo) y recientes (en la superficie), y en una cierta capa es donde se hallaban estos fósiles. En las más antiguas se encontraban especies muy diferentes a las especies modernas y vieron que estas especies vegetales y animales ya se habían extinguido, es decir, ninguna se encontraba disponible en la Tierra. Con esto pudieron concluir que distintos tipos de
organismos vivieron en otras épocas de la historia.

A pesar de contar con los fósiles como evidencia, muchos científicos no aceptaban que las especies cambiaban o que surgían con el paso del tiempo. Así, con el fin de mantener la idea de la creación por parte de una divinidad, pero explicando la extinción de algunas especies, George Cuvier, paleontólogo francés (1769-1832) propuso la teoría del catastrofismo. Esta teoría explica que los cambios biológicos y geológicos de nuestro planeta se debían a cambios violentos como las catástrofes (terremotos, meteoritos, inundaciones, volcanes, etc.).

Por lo tanto, las especies existieron y desaparecieron debido a estas catástrofes (figura 1.3). Una vez extintas, nuevas especies aparecerían y ocuparían los lugares de las anteriores, este proceso se repetiría con el tiempo.

La hipótesis de Cuvier y las catástrofes fueron cuestionadas por el geólogo Charles Lyell (1797-1875) y James Hutton (1726-1797), quienes consideraban que las explicaciones divinas o bíblicas son poco científicas y por lo tanto falsas. La teoría del uniformismo se opone totalmente al catastrofismo, defiende la existencia de procesos naturales como la sedimentación, vulcanismo y la erosión, que actuaban de forma muy lenta, uniforme y sin interrupción debido a fuerzas que operaban sobre el relieve de la Tierra durante mucho tiempo, estas fuerzas se consideran fijas y constantes. Hutton observó cambios en la corteza terrestre a lo largo del tiempo y estableció que la edad del planeta era mucho mayor que la deducida en el Génesis, es decir, de varios millones de años. Un ejemplo de este cambio gradual es la formación de cordilleras y valles, que se da por la fuerza lenta que ejerce el viento y el agua en la superficie y no por catástrofes o grandes inundaciones. Lyell y Hutton demostraron que este tiempo, la edad de la Tierra, era suficiente para que todo evolucionara y era parte de un mecanismo.

El primer científico que propuso un mecanismo de evolución fue Jean Baptiste Lamarck (1744-1829), quien estudió la secuencia de los organismos en las capas de las
rocas, fósiles más antiguos tenían formas más simples y fósiles más recientes tienden a ser más complejos y parecidos a los actuales. Además, Lamarck planteó que las especies van cambiando sus características a lo largo del tiempo de una manera gradual, mostrando una tendencia hacia la complejidad y la perfección, esta teoría se basa en dos suposiciones:

- Ley del uso y del desuso: cuando una parte del cuerpo se usa repetidamente crece y se desarrolla, en cambio, si no se usa se atrofía, se debilita lentamente y llega a desaparecer.

- Ley de la herencia de los caracteres adquiridos: cualquier animal puede transmitir a sus descendientes aquellos caracteres que ha adquirido durante su vida.

Por ejemplo, si los antepasados de las jirafas intentaban aumentar su ración alimenticia al estirarse a comer las hojas de las ramas altas de los árboles, sus cuellos se alargaban en consecuencia, por lo tanto, sus descendientes heredarían cuellos más largos y así sucesivamente hasta llegar a las jirafas como las conocemos ahora (figura 1.4).

El siguiente mecanismo, y que fue clave en el tema de la evolución, es el de Darwin y Wallace, quienes, a mediados del siglo XIX, concluyeron que las especies existentes eran resultado de la evolución de sus predecesoras.

El razonamiento que condujo a Charles Darwin (1809-1882) y Alfred Russel Wallace (1823-1913), cada quien, por su lado, a su propuesta de proceso de evolución resulta ser muy simple, y descubrieron que algunas especies sólo cambiaban en algunos aspectos; por ejemplo, Darwin estudió un grupo de especies de pinzones que se especializan en comer distintos alimentos, por lo que su pico tiene tamaño y forma característicos para consumir ese alimento.
Figura 1.5 Pinzón. (1) Pinzón grande de tierra con el pico adaptado para comer semillas grandes; (2) pinzón pequeño de tierra, con pico pequeño adaptado para comer semillas pequeñas; (3) pinzón gorjeador, con el pico adaptado para comer insectos, y (4) pinzón arbóreo vegetariano, con pico adaptado para comer hojas.

Darwin y Wallace propusieron que los individuos de cada generación difieren ligeramente de los miembros de la generación anterior, lo que resulta a lo largo del tiempo como grandes transformaciones.

Con las investigaciones de Wallace, Darwin publicó en 1859 *El origen de las especies por selección natural*, en la que explica la teoría apoyándola de las diferentes observaciones que tuvo sobre la naturaleza.

La teoría evolutiva o darwinismo se basa en cuatro postulados acerca de las poblaciones.

1. **Los individuos varían en una población.** Cada uno de los integrantes de una población difiere de los demás en muchos aspectos.

2. **Los caracteres se heredan de padres a descendientes.** Al menos algunas de las diferencias entre los miembros de una población se deben a características que pueden transmitirse de los progenitores a la descendencia.

3. **Algunos individuos no logran sobrevivir y reproducirse.** En cada generación, algunos individuos de una población sobreviven y se reproducen con éxito y otros no.

4. **La supervivencia y la reproducción no están determinadas por el azar.** La supervivencia y la reproducción dependen de sus características. Los individuos con caracteres de ventaja sobreviven más tiempo y dejan mayor número de descendencia, un proceso llamado selección natural.

Fenotipo: conjunto de caracteres visibles que un individuo presenta.
Genotipo: conjunto de genes que existen en el núcleo celular de cada individuo.
Población: todos los individuos de una especie en un área particular.
Selección natural: supervivencia y reproducción diferencial de organismos con fenotipos diferentes, causada por fuerzas ambientales. La selección natural se refiere específicamente a casos en que los fenotipos son heredables; es decir, son causados al menos en parte por diferencias genotípicas, con el resultado de que los fenotipos mejor adaptados se vuelven más comunes en la población.

Biodiversidad y su preservación

Durante siglos, los naturalistas han intentado describir la diversidad del mundo natural. A continuación se describen los diseños de clasificación de científicos como Carlos Linneo, Robert Whittaker y Carl Woese.

En 1758 el naturalista sueco Carlos Linneo quien diseñó un modelo de clasificación, basado en una serie de niveles jerárquicos, que de lo general a lo particular tienen la siguiente secuencia:

Reino-Filum-Clase-Orden-Familia-Genéreo-Especie

Con base a los criterios de Clasificación de Linneo, se presenta a continuación el ejemplo de los niveles jerárquicos a los que pertenece el ser humano.

Reino: Animalia
Características: organismos heterótrofos, compuestos por células eucariotas sin pared celular y pluricelulares.

Filum: Cordados
Características: organismos primitivos, con cuerda dorsal.

Clase: Mammalia
Características: organismos con glándulas mamarias funcionales en las hembras, que secretan leche para la nutrición de sus hijos. También tienen pelo.

Orden: Primates
Características: ojos frontales, pulgar oponible.

Familia: Hominidae
Características: (cerebro desarrollado y con neocórtex, visión estereoscópica).

Género: Homo
Características: Espina dorsal curvada, posición bípeda permanente.
Tomando como base la clasificación de Linneo en relación a las jerarquías taxonómicas, Robert Whittaker en 1974 propuso una agrupación de los seres vivos a partir de sus características comunes, como son:

- Tipo celular: procariota o eucariota
- Nivel de organización: unicelulares o pluricelulares
- Tipo de nutrición: autótrofos o heterótrofos
- Tipo de reproducción: sexual o asexual

Árbol filogenético de los cinco reinos según Whittaker

Bajo los criterios anteriores, Whittaker organiza a los seres vivos en cinco grandes reinos: Monera, Protista, Fungi, Plantae y Animalia, según la siguiente tabla.

<table>
<thead>
<tr>
<th>Clasificación de Robert Whittaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reino</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Monera</td>
</tr>
<tr>
<td>Clasificación de Robert Whittaker</td>
</tr>
<tr>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Protista</td>
</tr>
<tr>
<td>Fungi</td>
</tr>
<tr>
<td>Plantae</td>
</tr>
<tr>
<td>Animalia</td>
</tr>
</tbody>
</table>

Mediante el análisis de la secuencia de ARN ribosomal de los organismos vivientes, Carl Woese, basándose en las relaciones evolutivas y diferencias moleculares, agrupó en tres grandes dominios a los cinco reinos propuestos por Whittaker, denominados: arquea, bacteria y eukaria.

| Arqueobacteria. | Bacteria. | Eucariota (tejido de estómago de mamífero). |

<table>
<thead>
<tr>
<th>Criterios de Carl Woese</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dominio</td>
</tr>
<tr>
<td>Bacteria</td>
</tr>
<tr>
<td>Arquea</td>
</tr>
<tr>
<td>Eukaria</td>
</tr>
</tbody>
</table>
Consideremos el flujo de un líquido a través de una tubería, que reduce de manera considerable el área de su sección transversal entre dos puntos: 1 y 2, como se muestra en la figura.

Fig. El área de la sección transversal del tubo se reduce, pero la cantidad de flujo que entra es igual a la que sale.

Como el líquido es incompresible, el flujo de masa que entra al tubo en un intervalo de tiempo “t”, tendrá que salir en el mismo tiempo. Es decir, el flujo en el punto 1 debe de ser igual en el punto 2, y en general en cualquier punto.

Esto es solo consecuencia de la ley de la conservación de la masa, y se expresa en la ecuación de continuidad:

\[
\frac{Masa\ que\ entra}{tiempo} = \frac{Masa\ que\ sale}{tiempo}
\]

La masa puede expresarse en función del volumen que ocupa, así:

\[
M = \rho v = \rho Ad,
\]

lo que:

\[
v_1A_1 = v_2A_2
\]

A esta ecuación se le conoce como la de ecuación de continuidad.

De la ecuación anterior se deduce que el producto “Av” es constante, independientemente del grosor del tubo por el que fluye el líquido. Esto significa que, si se reduce el área de la sección transversal del tubo, debe aumentar la velocidad, para que el producto “Av” se mantenga constante, y viceversa, al aumentar el área debe disminuir la velocidad del líquido.

Lo anterior se hace evidente cuando regamos el patio o el jardín con una manguera, al disminuir el área por donde pasará el agua apretando la manguera o colocándole una boquilla, el agua sale con mayor velocidad. Igualmente, la velocidad de las aguas de un río, es menor en la parte ancha del mismo, pero aumenta en los lugares donde el río se hace más angosto.

Ejemplo 1.- Por una tubería de 3.9 cm de diámetro circula agua a una velocidad cuya
magnitud es de 4.5 m/s. En la parte final de la tubería hay un estrechamiento y el diámetro es de 2.25 cm. ¿qué magnitud de velocidad llevará el agua en este punto?

Solución:
Lo primero será recaudar nuestros datos implícitos en el problema.

\[d_1 = 3.9\text{cm} \left(\frac{1\text{m}}{100\text{cm}} \right) = 0.039\text{m} \]

\[d_2 = 2.25\text{cm} \left(\frac{1\text{m}}{100\text{cm}} \right) = 0.0225\text{m} \]

\[v_1 = 4.5\frac{\text{m}}{\text{s}} \]

\[v_2 = ? \]

Bien, si nos damos cuenta no tenemos el área, pero sí tenemos los diámetros de la tubería, lo que nos facilita poder obtener las áreas. Así que procedemos a calcularlas.

\[A_1 = \frac{\pi d_1^2}{4} = \frac{\pi (0.039\text{m})^2}{4} = 1.19 \times 10^{-3}\text{m}^2 \]

Luego con la otra:

\[A_2 = \frac{\pi d_2^2}{4} = \frac{\pi (0.0225\text{m})^2}{4} = 0.398 \times 10^{-3}\text{m}^2 \]

Con lo que establecemos, la ecuación de continuidad y despejamos nuestra incógnita.

\[A_1 v_1 = A_2 v_2 \]

Despejando:

\[v_2 = \frac{A_1 v_1}{A_2} \]

Sustituyendo datos:

\[v_2 = \frac{A_1 v_1}{A_2} = \frac{(1.19 \times 10^{-3}\text{m}^2)(4.5\frac{\text{m}}{\text{s}})}{0.398 \times 10^{-3}\text{m}^2} = 13.5\frac{\text{m}}{\text{s}} \]

Por lo que la velocidad del agua en la salida, será de 13.5 m/s
Práctica de laboratorio 1. Presión hidrostática, gasto y flujo de masa.

Materiales:
- Cinta adhesiva
- Clavo o tornillo
- Botella de PET
- Cinta métrica
- Encendedor
- Probeta graduada (recipiente que mida los ml)

Procedimiento:
1. Marcar la botella a 5 cm, 10 cm y 20 cm con respecto a la base
2. Calentar perfectamente bien el clavo o tornillo y perforar con mucho cuidado en cada orificio marcado, procurar que los orificios queden del mismo tamaño y suficiente para que el agua salga a través de ellos
3. Tapar los huecos con la cinta adhesiva para evitar que el agua se tire
4. Llenar totalmente la botella
5. Destapar el hueco superior de la botella (el de 20 cm con respecto a la base), juntar el agua por 10 segundos y medir el volumen con la probeta y anotar todos los datos
6. Tapar el hueco, llenar nuevamente la botella, se realiza el mismo procedimiento en los que faltan y se anotan todos los datos
7. Completar el cuadro que a continuación se muestra

Tabla de resultados:

<table>
<thead>
<tr>
<th>Orificios</th>
<th>Tiempo</th>
<th>Volumen(ml)</th>
<th>Volumen(m³)</th>
<th>Ph</th>
<th>Gasto</th>
<th>Flujo de masa</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tiempo: Para cada uno de los orificios se tiene que dar 10 segundos para captar el agua que sale del orificio correspondiente.

Volumen (ml): Colocar en ml la cantidad que marque el recipiente que hayas utilizado para medir el agua que salió de cada orificio.

Volumen (m³): Convertir los ml a m³. 1 ml =0.000001 m³.

Presión hidrostática (Ph): Calcular la presión hidrostática con los datos que cuentas h=la altura de cada uno de los orificios no olvides convertir los cm a metros).

Gasto: Calcular el gasto con cualquiera de las fórmulas que tienes en tu cuaderno. Es más fácil la de G= Volumen en m³/tiempo.

Flujo de Masa: Calcular el flujo de masa con la información con la que cuentas.

Observación: Antes de enviar tus resultados o completar la tabla. Analiza ¿En qué orificio crees que habrá más gasto debido a la presión hidrostática?
El calor y la temperatura

Es común que reconozcas objetos que se encuentran a distinta temperatura y esto lo percibimos a partir del tacto, con el cual podemos sentir algo cuando está caliente o frío. Sin embargo, medir las cosas a través de nuestra sensación puede ser no muy confiable o preciso. Por eso usamos diferentes instrumentos de medición.

Para entender lo que es la temperatura, recordemos que la materia está compuesta por átomos y moléculas que se mueven continuamente y cuando se aceleran los átomos y moléculas pasan a un nivel de energía diferente, que es la energía cinética. Esta energía se relaciona con una propiedad que permite saber qué tan caliente o frío se encuentra una persona u objeto. Cuando aumenta la energía cinética de los átomos o moléculas, las cosas aumentan su temperatura.

La magnitud que nos permite identificar qué tan caliente o frío está un objeto o cuerpo es la temperatura, la cual es uno de los parámetros que describe el estado de un sistema. La temperatura es una propiedad que no depende de la cantidad de materia, por lo tanto es una propiedad de intensidad.

Antiguamente la medición de la temperatura se llevaba a cabo a partir del tacto, pero este método no era confiable debido a que dependía de la percepción de cada persona, así que se diseñaron y construyeron dispositivos llamados termómetros que nos permite obtener la temperatura relativa de un cuerpo.

La temperatura es una magnitud física que nos indica qué tan caliente o frío se encuentra un cuerpo o sustancia.

Sabías que...
El primero en construir un termómetro en 1603 fue Galileo Galilei. Se trataba de una columna de agua encerrada en un tubo que se dilataba al aumentar la temperatura y se contraía cuando ésta disminuía.
Escalas de temperatura

Para medir la temperatura hay diferentes escalas, la más usual es la escala Celsius, creada en 1742 por el astrónomo sueco Anders Celsius, que marca 0°C cuando el hielo se derrite y 100°C cuando el agua hierve. La distancia entre los dos límites se divide en cien partes iguales. Cada una corresponde a un grado centígrado. Esta escala es la que utilizamos en nuestro país.

En Estados Unidos y en Europa se utiliza la escala Fahrenheit, establecida por el físico holandés-alemán Gabriel Daniel Fahrenheit en 1724. Que marca el 0° en el punto de congelación de una mezcla de agua con sal y 96° a la temperatura del cuerpo (este valor después se cambió a 98.6°). Esta escala divide la diferencia entre los puntos de fusión y de ebullición del agua en 180 intervalos iguales. A su vez, el intervalo 32° corresponde a la temperatura a la que el hielo se derrite y 212° a la temperatura de ebullición del agua. Estas dos escalas se conocen como relatives debido a que contienen valores positivos y negativos. La relación entre la escala Celsius y la escala Fahrenheit es:

\[
\frac{^\circ C}{100} = \frac{(^\circ F - 32)}{180}
\]

Para convertir temperaturas entre las escalas mencionadas se utilizan las siguientes ecuaciones:

\[
^\circ C = \frac{5}{9}(^\circ F - 32) \quad \text{y} \quad ^\circ F = \frac{9}{5}^\circ C + 32
\]

Ejemplo 1: Si la temperatura interior en una casa es de 10°C, ¿cuál será la temperatura en escala Fahrenheit?

Solución:

<table>
<thead>
<tr>
<th>Datos (1)</th>
<th>Incógnita (2)</th>
<th>Fórmula (3)</th>
<th>Sustitución (4)</th>
<th>Solución (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T = 10°C</td>
<td>T en °F</td>
<td>(^\circ F = \frac{9}{5}^\circ C + 32)</td>
<td>(^\circ F = 9 \cdot \frac{10}{5} + 32)</td>
<td>La temperatura en escala Fahrenheit es (T = 32^\circ F)</td>
</tr>
</tbody>
</table>

Ejemplo 2: La temperatura en verano en la ciudad de Monterrey ha llegado a alcanzar los 110°F. Expresa esta temperatura en grados Celsius.

Solución:

<table>
<thead>
<tr>
<th>Datos (1)</th>
<th>Incógnita (2)</th>
<th>Fórmula (3)</th>
<th>Sustitución (4)</th>
<th>Solución (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T = 110°F</td>
<td>T en °C</td>
<td>(^\circ C = \frac{5}{9}^\circ F - 32)</td>
<td>(^\circ C = \frac{5}{9}(110 - 32))</td>
<td>La temperatura en escala Celsius es (T = 43.3^\circ C)</td>
</tr>
</tbody>
</table>
La escala Kelvin, preferida por los científicos y aceptada por el Sistema Internacional de Unidades, fue creada en 1948 por el físico inglés William Thomson, Lord Kelvin, la cual se construye con base en la energía y no toma como referencia la ebullición o la congelación del agua. El número cero se asocia con la temperatura más baja posible y se liga con el estado en el que una sustancia no tiene absolutamente nada de energía cinética (cero absoluto); como la energía cinética no puede ser negativa, esta escala no tiene números negativos.

Las unidades en la escala Kelvin son de la misma equivalencia que las unidades de la escala Celsius y se simbolizan con la letra K. La temperatura de fusión del hielo es de 273.15 K, de tal forma que cero grados Kelvin corresponden a −273.15°C. La relación entre la escala Celsius y la escala Kelvin es:

\[K = ^\circ C + 273 \quad ^\circ C = K - 273 \]

Ejemplo 1: La temperatura del cuerpo humano es aproximadamente de 37°C. Expresa esta temperatura en escala Kelvin (K).

Solución:

<table>
<thead>
<tr>
<th>Datos (1)</th>
<th>Incógnita (2)</th>
<th>Fórmula (3)</th>
<th>Sustitución (4)</th>
<th>Solución (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T = 37°C</td>
<td>T en K</td>
<td>K = ^\circ C + 273</td>
<td>K = 37 + 273</td>
<td>La temperatura en escala Kelvin es: T = 310 K</td>
</tr>
</tbody>
</table>

Ejemplo 2: El punto de fusión de aluminio es aproximadamente 933 K. ¿Cuál es el valor en grados Celsius?

Solución:

<table>
<thead>
<tr>
<th>Datos (1)</th>
<th>Incógnita (2)</th>
<th>Fórmula (3)</th>
<th>Sustitución (4)</th>
<th>Solución (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T = 933 K</td>
<td>T en °C</td>
<td>°C = K - 273</td>
<td>°C = 933 - 273</td>
<td>La temperatura en escala Celsius es T = 660 °C</td>
</tr>
</tbody>
</table>

William Thomson, Lord Kelvin (1824-1907).
¿Qué es el calor?

En muchas ocasiones sentimos que está haciendo demasiado calor y pensamos que deberíamos ir a nadar o a comprar un helado, pero ¿sabemos qué es el calor?

Cuando dos cuerpos que están a diferentes temperaturas se ponen en contacto entre sí, hay una transferencia de energía del objeto más caliente al más frío, y no a la inversa, hasta alcanzar el equilibrio que se produce cuando ambos cuerpos tienen la misma temperatura. Se transfiere de tal forma que después de cierto tiempo alcanzan una misma temperatura, a este fenómeno se le llama equilibrio térmico.

El calor es la transferencia de energía de un cuerpo a otro debido a que hay una diferencia de temperatura entre ambos

El calor, involucra una transferencia de energía interna de un lugar a otro. La energía interna (U) es la energía asociada con los átomos y moléculas del cuerpo. La energía interna incluye a la energía cinética y potencial, asociadas con los movimientos de traslación, rotación y vibratorios que se presentan de manera aleatoria por las partículas que forman al cuerpo y cualquier energía potencial que genere enlaces manteniendo a las partículas unidas.

Unidades del calor.

<table>
<thead>
<tr>
<th>Sistema de unidades</th>
<th>Internacional</th>
<th>Cegesimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calor</td>
<td>→ Joule (J)</td>
<td>Ergios</td>
</tr>
</tbody>
</table>

Sin embargo, las unidades que se suelen utilizar son calorías (cal), kilocalorías (kcal).

Algunos equivalentes del calor en las unidades anteriores son:

\[1 \text{ cal} = 4.18 \text{ J} \]
\[1 \text{ kcal} = 41800 \text{ J} \]
\[1 \text{ kcal} = 1000 \text{ calorías} \]
Mecanismos de transferencia de calor
La transferencia de calor entre los cuerpos, se realiza de tres formas diferentes:

Conducción
Es el proceso mediante el cual el calor se transfiere directamente a través de un material, sin ningún movimiento neto del material. Por ejemplo, si acercas una varilla de metal a una llama, el calor que la llama emite se conduce al metal y éste a tu mano.

Radiación
Es el proceso por el que los cuerpos emiten energía que puede propagarse por el vacío. La energía radiante se transporta mediante ondas electromagnéticas. Por ejemplo, por la radiación nos llega el calor del sol, así como también por la radiación podemos sentir el calor que se desprende de un foco encendido si acercamos la mano.

Convección
Es el proceso por el cual el calor se transfiere a través de un fluido por el movimiento del mismo. Por ejemplo, cuando se pone a calentar un recipiente con agua, ésta al calentarse en la parte inferior se dilata y disminuye su densidad, por lo que el agua caliente asciende y transporta así el calor de la parte inferior a la parte superior, generando un movimiento interno de las partículas.

Dilatación de los cuerpos
La mayoría de los materiales se expanden cuando su temperatura aumenta, y se contraen cuando la temperatura disminuye. Esto ocurre porque al calentarse las moléculas se mueven más rápido y ocupan mayor espacio y esto hace que el cuerpo se expanda, y cuando se enfría, las moléculas se mueven más lento y los materiales se contraen, este fenómeno se conoce como dilatación, está estrechamente relacionado con los cambios de temperatura de los cuerpos.

Los arquitectos y los ingenieros civiles toman en cuenta los efectos de la dilatación térmica, por ejemplo, cuando se diseñan los rieles de un tren, se deja cierto espacio entre las uniones con el propósito de permitir la dilatación y evitar que la estructura del riel se deforme.

Dilatación térmica es el aumento que experimenta en sus dimensiones un cuerpo cuando aumenta la temperatura, permaneciendo la presión constante.

Los sólidos se dilatan aumentando su longitud principalmente, aunque también pueden dilatarse en su superficie o volumen. Al igual que los sólidos, los líquidos y los gases también aumentan o disminuye su volumen, sin embargo, los gases se dilatan más que los líquidos.
Dilatación lineal

Se ha comprobado experimentalmente que, al aumentar la temperatura de una barra, aumenta su longitud y este aumento es proporcional a su longitud inicial y al aumento de su temperatura. A dicho proceso se le conoce como **dilatación lineal** y se expresa matemáticamente de la siguiente manera:

\[\Delta L = \alpha L_i \Delta T \]

Donde:

- \(\Delta L \): es la variación de longitud.
- \(\alpha \): es el coeficiente de proporcionalidad conocido como el coeficiente de dilatación lineal es específico para cada material o sustancia como se muestra en la tabla 2.1.
- \(L_i \): es la longitud inicial.
- \(\Delta T \): es la variación de la temperatura.

\(\Delta L \) es la variación de la longitud.

La variación de la longitud es la diferencia entre la longitud final, \(L_f \), y la longitud inicial, \(L_i \):

\[\Delta L = L_f - L_i \]

La variación de la temperatura \(\Delta T \) es la diferencia entre la temperatura final, \(T_f \), y la temperatura inicial, \(T_i \):

\[\Delta T = T_f - T_i \]

Tabla 2.1. Coeficiente de dilatación lineal de algunos de los materiales más usuales.

<table>
<thead>
<tr>
<th>Material</th>
<th>(\alpha) (°C(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concreto</td>
<td>0.7 - 1.2 × 10(^{-5})</td>
</tr>
<tr>
<td>Plata</td>
<td>2.0 × 10(^{-5})</td>
</tr>
<tr>
<td>Oro</td>
<td>1.5 × 10(^{-5})</td>
</tr>
<tr>
<td>Invar</td>
<td>0.04 × 10(^{-5})</td>
</tr>
<tr>
<td>Plomo</td>
<td>3.0 × 10(^{-5})</td>
</tr>
<tr>
<td>Zinc</td>
<td>2.6 × 10(^{-5})</td>
</tr>
<tr>
<td>Hielo</td>
<td>5.1 × 10(^{-5})</td>
</tr>
<tr>
<td>Aluminio</td>
<td>2.4 × 10(^{-5})</td>
</tr>
<tr>
<td>Latón</td>
<td>1.8 × 10(^{-5})</td>
</tr>
<tr>
<td>Cobre</td>
<td>1.7 × 10(^{-5})</td>
</tr>
<tr>
<td>Vidrio</td>
<td>0.4 - 0.9 × 10(^{-5})</td>
</tr>
<tr>
<td>Hierro</td>
<td>1.2 × 10(^{-5})</td>
</tr>
<tr>
<td>Cuarzo</td>
<td>0.04 × 10(^{-5})</td>
</tr>
<tr>
<td>Acero</td>
<td>1.2 × 10(^{-5})</td>
</tr>
</tbody>
</table>

Fórmula de dilatación lineal.
Ejemplo 1: Un puente de concreto se encuentra a una temperatura de 9°C y mide 72 m. Si la temperatura aumenta a 25°C, ¿cuál es la dilatación lineal?

<table>
<thead>
<tr>
<th>Datos (1)</th>
<th>Incógnita (2)</th>
<th>Fórmula (3)</th>
<th>Sustitución (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_i = 9°C)</td>
<td>(\Delta L)</td>
<td>(\Delta L = \alpha L \Delta T)</td>
<td>(\Delta T = 25°C - 9°C = 16°C)</td>
</tr>
<tr>
<td>(T_f = 25°C)</td>
<td></td>
<td></td>
<td>(\Delta L = (1.2 \times 10^{-5})(72 m)(16°C))</td>
</tr>
<tr>
<td>(L_i = 72 m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\alpha = 1.2 \times 10^{-5}°C^{-1})</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Solución:

La dilatación es 0.01382 m

Ejemplo 2: Una barra de plata a 20°C tiene una longitud de 1 m, ¿cuál será su longitud al aumentar la temperatura a 45°C?

<table>
<thead>
<tr>
<th>Datos (1)</th>
<th>Incógnita (2)</th>
<th>Fórmula (3)</th>
<th>Sustitución (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_i = 20°C)</td>
<td>(L_f)</td>
<td>(L_f = L_i \left[1 + \alpha \left(T_f - T_i \right) \right])</td>
<td>(L_f = (1) \left[1 + 2 \times 10^{-5} \left(45 - 20 \right) \right])</td>
</tr>
<tr>
<td>(T_f = 45°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta T = 25°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(L_i = 1 m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\alpha = 2 \times 10^{-5}°C^{-1})</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Solución:

La longitud final es 1.0005 m
Dilatación superficial

Cuando en los cuerpos sólidos con un área inicial se aumenta su temperatura en un grado Celsius, (1°C) los lados sufren dilatación superficial (γ), por ejemplo, en los rieles de los ferrocarriles como se muestra en la figura de abajo, cuando se calientan aumentan sus dimensiones y se tiene dilatación. Si se conoce el coeficiente de dilatación lineal podemos expresar el coeficiente de dilatación superficial:

\[\gamma = 2\alpha \]

\[\Delta A = \gamma A_i \Delta T \]

donde:

- \(\Delta A = A_f - A_i \) → Variación de la superficie (aumento o contracción del área)

- \(A_f \) → Área final

- \(A_i \) → Área inicial

- \(\alpha \) → Coeficiente de dilatación lineal

- \(\Delta T = T_f - T_i \) → Variación de la temperatura

- \(T_f \) → Temperatura final

- \(T_i \) → Temperatura inicial

Espacios de dilatación en el diseño de rieles de tren.

Junta de dilatación
Al conocer el coeficiente de dilatación superficial del objeto, se puede calcular el área final que tendrá el objeto utilizando la siguiente fórmula:

\[A_f = A_i \left(1 + 2\alpha (T_f - T_i) \right) \]

Ejemplo: A una temperatura de 20°C, una puerta de aluminio tiene un 2 m de largo y un 1 m de ancho. ¿Cuál será su área en un día de invierno cuando la temperatura es de 12°C?

Solución:

<table>
<thead>
<tr>
<th>Datos (1)</th>
<th>Incognita (2)</th>
<th>Fórmula (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti = 20°C</td>
<td></td>
<td>[A_f = A_i \left(1 + 2\alpha (T_f - T_i) \right)]</td>
</tr>
<tr>
<td>Tf = 12 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta T = -8°C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Largo = 2 m</td>
<td>A_f</td>
<td></td>
</tr>
<tr>
<td>Ancho = 1 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A = 2 m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\alpha = 2.24 \times 10^{-5} \text{°C}^{-1})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sustitución (4)

\[L = \left(2 \right) \left[1 + 2(2.24 \times 10^{-5} \text{°C}^{-1}) (-8) \right] \]

\[L = 1.9999 \text{ m} \]

Dilatación volumétrica

Los sólidos, líquidos, gases tienen un incremento de volumen al aumentar la temperatura, este fenómeno se conoce como dilatación volumétrica \((\beta) \), el cual se refiere al aumento que experimenta cada unidad de volumen de la sustancia al aumentar en 1°C su temperatura.

Si se conoce el coeficiente de dilatación lineal de un sólido, se puede calcular el coeficiente de dilatación volumétrica a partir de la siguiente relación.

\[\beta = 3\alpha \]

Para calcular la dilatación volumétrica:

\[\Delta V = \beta V_i \Delta T \quad \text{o} \quad \Delta V = 3\alpha V_i \Delta T \]
Donde:

\[\Delta V = V_f - V_i \rightarrow \text{Variación del volumen (aumento o contracción del volumen)} \]

\[V_f \rightarrow \text{Volumen final} \]

\[V_i \rightarrow \text{Volumen inicial} \]

\[\alpha \rightarrow \text{Coeficiente de dilatación lineal} \]

\[\Delta T = T_f - T_i \rightarrow \text{Variación de la temperatura} \]

\[T_f \rightarrow \text{Temperatura final} \]

\[T_i \rightarrow \text{Temperatura inicial} \]

Podemos encontrar el volumen final de un sólido, líquido o un gas a partir de la siguiente expresión:

\[V_f = V_i \left[1 + \beta (T_f - T_i) \right] \]

\[V_f = V_i \left[1 + 3\alpha (T_f - T_i) \right] \]

El valor del coeficiente lo puedes encontrar en la tabla 2.1.

Ejemplo: Una esfera de vidrio cuyo coeficiente volumétrico es \(\beta = 3.5 \times 10^{-5} \text{°C}^{-1} \) a 20°C tiene un volumen de 0.3 m\(^3\), ¿cuál será su volumen a una temperatura de 40°C? ¿Cuánto se dilató?

Solución:

<table>
<thead>
<tr>
<th>Datos (1)</th>
<th>Incógnita (2)</th>
<th>Fórmula (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_i) = 20°C</td>
<td>(V_f)</td>
<td>(V_f = V_i \left[1 + \beta (T_f - T_i) \right])</td>
</tr>
<tr>
<td>(T_f) = 40°C</td>
<td></td>
<td>(V_f = V_i \left[1 + 3\alpha (T_f - T_i) \right])</td>
</tr>
<tr>
<td>(\Delta T) = 20°C</td>
<td>(\Delta V)</td>
<td>(\Delta V = V_f - V_i)</td>
</tr>
<tr>
<td>(V) = 0.3 m(^3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\alpha) = (4.45 \times 10^{-5} \text{°C}^{-1})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sustitución (4)

\[V_i = (0.3) \left[1 + (3.45 \times 10^{-5})(40-20) \right] \]

\[\Delta V = 0.300207 - 300 = 0.000207 \]

Solución (5)

El volumen final es 0.300207 m\(^3\)

La dilatación es 0.000207 m\(^3\)
IV. Electricidad
Historia de la electricidad

Concepto

Esta palabra deriva de la voz griega elektro, que significa ámbar. Toda sustancia se compone de pequeñas partículas denominadas átomos.

Thales de Mileto (630–550 AC) fue el primero, que cerca del 600 AC, conociera el hecho de que el ámbar, al ser frotado adquiere el poder de atracción sobre algunos objetos.

Sin embargo, fue el filósofo Griego Theophrastus (374–287 AC) el primero, que en un tratado escrito tres siglos después, estableció que otras sustancias tienen este mismo poder, dejando así constancia del primer estudio científico sobre la electricidad.

En 1600, la Reina Elizabeth I ordena al Físico Real William Gilbert (1544–1603) estudiar los imanes para mejorar la exactitud de las Brújulas usadas en la navegación, siendo éste trabajo la base principal para la definición de los fundamentos de la Electrostatía y Magnetismo.

Gilbert fue el primero en aplicar el término electricidad del Griego "elektron" = ámbar.

Gilbert es la unidad de medida de la fuerza magneto motriz.

En 1752, Benjamín Franklin (1706–1790) demostró la naturaleza eléctrica de los rayos.

Desarrolló la teoría de que la electricidad es un fluido que existe en la materia y su flujo se debe al exceso o defecto del mismo en ella. Inventó el pararrayos.

En 1780 inventa los lentes bifocales.

En 1776, Charles Agustín de Coulomb (1736–1806) inventó la balanza de torsión con la cual, midió con exactitud la fuerza entre las cargas eléctricas y corroboró que dicha fuerza era proporcional al producto de las cargas individuales e inversamente proporcional al cuadrado de la distancia que las separa. Coulomb es la unidad de medida de carga eléctrica.

En 1800, Alejandro Volta (1745–1827) construye la primera celda electrostática y la batería capaz de producir corriente eléctrica. Su inspiración le vino del estudio realizado por el Físico Italiano Luigi Galvani (1737–1798) sobre las corrientes nerviosas–eléctricas en las ancas de ranas.

Galvani propuso la teoría de la Electricidad Animal, lo cual contrarió a
Volta, quien creía que las contracciones musculares eran el resultado del contacto de los dos metales con el músculo.

Sus investigaciones posteriores le permitieron elaborar una celda química capaz de producir corriente continua, fue así como desarrolló la Pila.

Volt es la unidad de medida del potencial eléctrico (Tensión).

Desde 1801 a 1815, Sir Humphry Davy (1778−1829) desarrolla la electroquímica (nombre asignado por él mismo), explorando el uso de la pila de Volta o batería, y tratando de entender como ésta funciona.

En 1801 observa el arco eléctrico y la incandescencia en un conductor energizado con una batería.

Entre 1806 y 1808 publica el resultado de sus investigaciones sobre la electrólisis, donde logra la separación del Magnesio, Bario, Estroncio, Calcio, Sodio, Potasio y Boro.

En 1807 fabrica una pila con más de 2000 placas dobles, con la cual descubre el Cloro y demuestra que es un elemento, en vez de un ácido.

En 1815 inventa la lámpara de seguridad para los mineros.

Sin ningún lugar a duda, el descubrimiento más importante lo realiza ese mismo año, cuando descubre al joven Michael Faraday y lo toma como asistente.

En 1819, el científico Danés Hans Christian Oersted (1777−1851) descubre el electromagnetismo, cuando en un experimento para sus estudiantes, la aguja de la brújula colocada accidentalmente cerca de un cable energizado por una pila voltaica, se movió. Este descubrimiento fue crucial en el desarrollo de la electricidad, ya que puso en evidencia la relación existente entre la electricidad y el magnetismo.

Oersted es la unidad de medida de la Reluctancia Magnética.

En 1823, Andre−Marie Ampere (1775−1836) establece los principios de la electrodinámica, cuando llega a la conclusión de que la Fuerza Electromotriz es producto de dos efectos: La tensión eléctrica y la corriente eléctrica. Experimenta con conductores, determinando que estos se atraen si las corrientes fluyen en la misma dirección, y se repelen cuando fluyen en contra.

Ampere produce un excelente resultado matemático de los fenómenos estudiados por Oersted.

Ampere es la unidad de medida de la corriente eléctrica.

En 1826, El físico Alemán Georg Simon Ohm (1789−1854) fue quien formuló con exactitud la ley de las corrientes eléctricas, definiendo la relación exacta entre la tensión y la corriente. Desde entonces, esta ley se conoce como la Ley de Ohm.
Ohm es la unidad de medida de la Resistencia Eléctrica.

\[R = \frac{V}{I} \quad \text{Ohm} = \text{Volts} / \text{Amperes} \]

En 1831, Michael Faraday (1791–1867) a los 14 años trabajaba como encuadernador, lo cual le permitió tener el tiempo necesario para leer y desarrollar su interés por la Física y Química. A pesar de su baja preparación formal, dio un paso fundamental en el desarrollo de la electricidad al establecer que el magnetismo produce electricidad a través del movimiento.

Faraday es la unidad de medida de la Capacitancia Eléctrica.

La tensión inducida en la bobina que se mueve en campo magnético no uniforme fue demostrada por Faraday.

En 1835, Simule F.B. Morse (1791–1867) mientras regresaba de uno de sus viajes, concibe la idea de un simple circuito electromagnético para transmitir información, El Telégrafo. En 1835 construye el primer telégrafo.

En 1837 se asocia con Henry y Vail con el fin de obtener financiamiento del Congreso de USA para su desarrollo, fracasa el intento, prosigue solo, obteniendo el éxito en 1843, cuando el congreso le aprueba el desarrollo de una línea de 41 millas desde Baltimore hasta el Capitolio en Washington D.C. La cual construye en 1844.

En 1840–42, James Prescott Joule (1818–1889) Físico inglés, quien descubrió la equivalencia entre trabajo mecánico y la caloria, y el científico alemán Hermann Ludwig Ferdinand Helmholtz (1821–1894), quien definió la primera Ley de la Termodinámica demostraron que los circuitos eléctricos cumplían con la Ley de la Conservación de la energía y que la electricidad era una forma de energía.

Adicionalmente, Joule inventó la soldadura eléctrica de arco y demostró que el calor generado por la corriente eléctrica era proporcional al cuadrado de la corriente. Joule es la unidad de medida de Energía.

En 1845, Gustav Robert Kirchhoff (1824–1887) Físico alemán a los 21 años de edad, anunció las leyes que permiten calcular las corrientes, y tensiones en redes eléctricas. Conocidas como Leyes de Kirchhoff I y II.

Estableció las técnicas para el análisis espectral, con la cual determinó la composición del Sol.

En 1854, El matemático inglés William Thomson (Lord Kelvin) (1824–1907, con su trabajo
sobre el análisis teórico sobre transmisión por cable, hizo posible el desarrollo del cable transatlántico.

En 1851 definió la Segunda Ley de la Termodinámica.

En 1858 inventó el cable flexible.

Kelvin es la unidad de medida de temperatura absoluta.

En 1870, James Clerk Maxwell (1831–1879), matemático inglés formuló las cuatro ecuaciones que sirven de fundamento de la teoría Electromagnética. Dedujo que la Luz es una onda electromagnética, y que la energía se transmite por ondas electromagnéticas a la velocidad de la Luz.

Maxwell es la unidad del flujo Magnético.

En 1879, el físico inglés Joseph John Thomson (1856–1940) demostró que los rayos catódicos estaban constituidos de partículas atómicas de carga negativas la cual llamó “Corpúsculos” y hoy en día los conocemos como Electrones.

En 1881, Thomas Alva Edison (1847–1931) produce la primera lámpara incandescente con un filamento de algodón carbonizado. Este filamento permaneció encendido por 44 horas.

En 1881 desarrolló el filamento de bambú con 1.7 lúmenes por vatios. En 1904 el filamento de tungsteno, con una eficiencia de 7.9 lúmenes por vatios. En 1910 la lámpara de 100 w con rendimiento de 10 lúmenes por vatios.

Hoy en día, las lámparas incandescentes de filamento de tungsteno de 100 w tienen un rendimiento del orden de 18 lúmenes por vatios. En 1882 Edison instaló el primer sistema eléctrico para vender energía para la iluminación incandescente en los Estados Unidos para la estación Pearl Street de la ciudad de New York.

El sistema fue en CD tres hilos, 220–110 v con una potencia total de 30 kw.

En 1884, Heinrich Rudolf Hertz (1847–1894) demostró la validez de las ecuaciones de Maxwell y las reescribió en la forma que hoy en día es conocida. En 1888 Hertz recibió el reconocimiento por sus trabajos sobre las Ondas Electromagnéticas: propagación, polarización y reflexión de ondas.

Con Hertz se abre la puerta para el desarrollo de la radio.

Hertz es la unidad de medida de la frecuencia.
Conceptos básicos de la electricidad

La palabra electricidad se deriva de la raíz griega elektron, que significa ámbar.

La electricidad se define como un fenómeno físico que se origina del movimiento de partículas subatómicas por medio de cargas eléctricas a través de la atracción y repulsión de las mismas, además de ser considerada una fuente de energía tan variable que tiene aplicaciones en el transporte, el clima y la iluminación, por mencionar algunos ejemplos. La electricidad se usa para generar:

- Luz mediante lámparas
- Calor mediante resistencias como las parrillas y hornos eléctricos
- Movimiento mediante motores que transforman la energía eléctrica en mecánica como la licuadora
- Señales mediante sistemas electrónicos como los circuitos electrónicos de celulares, computadoras, televisiones y cualquier aparato electrónico

Por otra parte, la Electricidad es una rama de la Física que estudia todos los fenómenos relacionados con las cargas eléctricas en reposo o movimiento. Para su estudio se divide en:

Electricidad

- **Electrostática**: Rama de la electricidad que se encarga de estudiar las cargas eléctricas en reposo
- **Electrodinámica**: Estudia los fenómenos relacionados con las cargas eléctricas en movimiento

La carga eléctrica es una propiedad fundamental de la materia y base de todos los fenómenos de interacción eléctrica. Se representa con la letra q.

Las cargas eléctricas son de dos tipos:

Atracción: Cargas eléctricas de diferente signo atraen.
Repulsión: Cargas eléctricas del mismo signo se rechazan.

Fuerzas electrostáticas

- **Cargas eléctricas iguales se repelen**
- **Cargas eléctricas diferentes se atraen**

Todos los elementos que tienen propiedades física y química semejantes se encuentran agrupados en la tabla periódica. Desde el punto de vista eléctrico, todos...
Los cuerpos simples o compuestos formados por esos elementos se pueden dividir en tres amplias categorías:

- Conductores
- Aislantes
- Semiconductores

Un medio o material que permite el movimiento de las cargas eléctricas (electrones) en respuesta a una fuerza eléctrica, se denomina conductor.

Los materiales conductores son los que se pueden electrizar en toda su superficie, debido a que los electrones se mueven libremente. Los metales por lo general son buenos conductores de la electricidad.

El flujo de las partículas cargadas es lo que se conoce como corriente eléctrica. Las partículas cargadas en una cierta dirección de un conductor chocan con los átomos, produciendo una pérdida de energía que se manifiesta en forma de calor.

Una medida de oposición que presentan las partículas cargadas al moverse libremente en una cierta dirección de un material conductor es lo que se conoce como resistencia eléctrica.

Los materiales que no permiten que las partículas cargadas se muevan hacia otra región del material a una fuerza eléctrica, son llamados aislantes por ejemplo, la madera.

Existen otros tipos de materiales cuyas propiedades intermedias entre los conductores y aislantes llamados semiconductores.

Algunos ejemplos de materiales con estas características son:

- Aisladores o malos conductores
 - Laca, agua, vidrio, gomas
- Semiconductores
 - Silicio, germanio
- Conductores
 - Metales, aluminio, oro, cobre.

Ley de Coulomb (fuerza eléctrica)

En 1748, el científico francés Charles Coulomb desarrolló un dispositivo denominado péndulo de torsión con el fin de investigar las propiedades de la fuerza con que se atraen o repelen las cargas eléctricas. Este dispositivo está formado por una barra que cuelga de una fibra capaz de torcerse, cuando la barra gira, la fibra tiende a regresar a su posición original. Coulomb colocó pequeñas esferas cargadas a diferentes distancias midió la fuerza que se producía considerando el ángulo con que giraba la barra estableciendo un modelo matemático conocido como la Ley de Coulomb que relaciona la fuerza eléctrica entre dos cuerpos cargados separados a una distancia.
La Ley de Coulomb establece que la fuerza q_1, q_2 con que dos cargas eléctricas se atraen o repelen es proporcional al producto de las mismas e inversamente proporcional al cuadrado de la distancia r que las separan.

Matemáticamente se expresa:

$$ F = k \frac{q_1 q_2}{r^2} $$

donde:

<table>
<thead>
<tr>
<th>F</th>
<th>Fuerza</th>
<th>Unidades del Sistema Internacional</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>Constante de proporcionalidad</td>
<td>$9 \times 10^9 \text{Nm}^2\text{C}^{-2}$ valor para el vacío</td>
</tr>
<tr>
<td>q_1, q_2</td>
<td>Cargas</td>
<td>Coulomb (C)</td>
</tr>
<tr>
<td>r</td>
<td>Distancia entre las partículas</td>
<td>Metros (m)</td>
</tr>
</tbody>
</table>

La Ley de Coulomb se cumple cuando las cargas se encuentran en el vacío, pues si el medio es el aire, aceite, etc., la fuerza electrostática se reduce considerablemente.

Los prefijos utilizados para las cargas son:

1 milicoulomb 1 mC 1×10^{-3}
1 microcoulomb 1 μC 1×10^{-6}
1 nanocoulomb 1 nC 1×10^{-9}

La relación que existe entre la fuerza en el vacío y otro medio se conoce como permitividad relativa del medio o coeficiente dieléctrico, la cual se expresa matemáticamente.

$$ \varepsilon_r = \frac{F}{F_m} $$

donde:

<table>
<thead>
<tr>
<th>F</th>
<th>Fuerza en el vacío</th>
<th>Unidades del Sistema Internacional</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_m</td>
<td>Fuerza del medio</td>
<td>Newton (N)</td>
</tr>
<tr>
<td>ε_r</td>
<td>Permitividad relativa del medio</td>
<td>Adimensional</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material</th>
<th>Permitividad relativa del medio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vacío</td>
<td>1</td>
</tr>
<tr>
<td>Aire</td>
<td>1.005</td>
</tr>
<tr>
<td>Vidrio</td>
<td>7</td>
</tr>
<tr>
<td>Mica</td>
<td>5</td>
</tr>
<tr>
<td>PVC</td>
<td>3.3</td>
</tr>
<tr>
<td>Teflón</td>
<td>2.1</td>
</tr>
</tbody>
</table>

Tabla 3.2: Permittividad relativa de algunos materiales.
Ejemplo. Ejercicio 1
Calcular la fuerza sobre la carga q_1, sabiendo que $q_1 = 1 \, \mu C$, $q_2 = -2 \, \mu C$ y $d = 1 \, m$.

Solución.
La fuerza eléctrica tiene dirección hacia q_2 y es de atracción ya que las cargas son de distinto signo.

Ejemplo. Ejercicio 2
Calcular la magnitud de la fuerza eléctrica entre dos cargas cuyos valores son: $q_1 = 3.5$ milicoulombs, $q_2 = 6$ milicoulombs, al estar separadas en el vacío por una distancia de 40 cm.

Solución:
Si analizamos el problema, nos muestran dos cargas expresadas en milicoulombs, eso quiere decir que está expresada en notación científica de la siguiente forma:

$Q_1 = 3.5 \, \mu C = 3.5 \times 10^{-3} \, C$

$Q_2 = 6.5 \, \mu C = 6 \times 10^{-3} \, C$

Es decir, que cuando nos referimos a “milis” hacemos referencia a que la base 10 está elevada a la “-3”.

Ahora que ya tenemos nuestros datos necesarios y que sabemos que la constante de Coulombe es:

$K = 9 \times 10^9 \frac{N \cdot m^2}{C^2}$

Podemos empezar a sustituir en la fórmula

$F = K \frac{q_1 \cdot q_2}{d^2}$

Con la siguiente operación

Resultado: Tenemos una cantidad de fuerza de 1.18×10^6 Newtons.
Ejemplo 3.

Determinar la fuerza eléctrica entre dos cargas de 7 nC y 9 nC, separadas 3 mm. ¿Se ejercerá una fuerza de atracción o de repulsión?

Solución:

De la Ley de Coulomb tenemos:

\[
F = K \frac{q_1 q_2}{d^2} = \frac{9 \times 10^9 \text{Nm}^2\text{C}^{-2}}{(3 \times 10^{-3} \text{m})^2} \cdot (7 \times 10^{-9} \text{C}) \cdot (9 \times 10^{-9} \text{C})
\]

\[F = 6.3 \times 10^{-2} \text{N}\]

Campo Eléctrico e Intensidad del campo eléctrico

Sabemos que las cargas de signos iguales se repelen y de signos diferentes se atraen, esto quiere decir que las cargas influyen sobre la región que está a su alrededor, la cual se conoce como campo eléctrico.

El campo eléctrico es la zona del espacio donde cargas eléctricas ejercen su influencia, es decir, que cada carga eléctrica con su presencia modifica las propiedades del espacio que la rodea. El campo eléctrico es invisible, pero su fuerza ejerce acciones sobre los objetos cargados, lo que permite detectar su presencia y medir su intensidad.

El campo eléctrico es la región del espacio que rodea al cuerpo cargado eléctricamente y en el que otra carga sentirá una fuerza eléctrica.

Las líneas de campo eléctrico son líneas imaginarias trazadas de tal manera que su dirección en cualquier punto es la misma que la dirección del campo eléctrico en ese punto.

Intensidad del campo

La intensidad del campo eléctrico \(E\) en un punto se suele definir en términos de la fuerza \(F\) que experimenta una carga positiva pequeña \(+q\) cuando está colocada precisamente en ese punto. La magnitud del campo eléctrico está dada por:
En el sistema internacional las unidades de la intensidad del campo eléctrico es el Newton por Coulomb (N/C).

La intensidad del campo eléctrico producida por una carga de prueba puede obtenerse a partir de la Ley de Coulomb. Como la magnitud de la fuerza eléctrica sobre una carga de prueba es:

\[F = k \frac{q_1 q_2}{r^2} \]

Si sustituimos esta expresión de la intensidad y consideramos que \(q = q_0 \)

\[E = \frac{k q}{r^2} \]

donde:

<table>
<thead>
<tr>
<th>(E \rightarrow) Intensidad del campo</th>
<th>N/C (Newton/Coulomb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k \rightarrow) 9 x 10^9 Nm^2/C^2</td>
<td>-</td>
</tr>
<tr>
<td>(r \rightarrow) Distancia entre la carga eléctrica y el punto donde se desea conocer la intensidad</td>
<td>m (metros)</td>
</tr>
<tr>
<td>(q \rightarrow) Carga de prueba</td>
<td>C (Coulomb)</td>
</tr>
</tbody>
</table>

La dirección de la intensidad del campo eléctrico \(E \) en un punto en el espacio es la misma que la dirección en la que la carga positiva se moverá si se colocara en ese punto.

Alrededor de un cuerpo cargado existe un campo eléctrico, haya o no una segunda carga localizada en el campo. Si una carga se coloca en el campo, experimenta una fuerza \(F \) dada por:

\[F = q E \]

Ejemplos.

Ejemplo 1: Una carga de prueba de 10 μC se coloca en un punto del campo eléctrico y la fuerza que experimenta es de 25 N. ¿Cuál es la magnitud de la intensidad eléctrica en el punto donde está colocada la carga de prueba?
Ejemplo 2: Determina el valor de la intensidad del campo eléctrico de una carga de 2 \(\mu\text{C} \) que se encuentra a una distancia de 40 cm de ésta.

Solución:

\[
\begin{align*}
\text{Datos (1)} & \quad \text{Incógnita (2)} & \quad \text{Fórmula (3)} & \quad \text{Sustitución (4)} & \quad \text{Solución (5)} \\
q = 10 \ \mu\text{C} & \quad E & \quad E = \frac{F}{q} & \quad E = \frac{25 \ \text{N}}{10 \times 10^{-6} \ \text{C}} \\
& = 10 \times 10^{-6} \ \text{C} & & \quad \text{La intensidad del campo es} \\
F = 25 \ \text{N} & \quad & & \quad E = 2500000 \ \text{N/C}.
\end{align*}
\]

Ejemplo 2: Determina el valor de la intensidad del campo eléctrico de una carga de 2 \(\mu\text{C} \) que se encuentra a una distancia de 40 cm de ésta.

Solución:

\[
\begin{align*}
\text{Datos (1)} & \quad \text{Incógnita (2)} & \quad \text{Fórmula (3)} & \quad \text{Sustitución (4)} & \quad \text{Solución (5)} \\
q = 2 \ \mu\text{C} & \quad E & \quad E = \frac{k \cdot q}{r^2} & \quad E = \frac{\left(9 \times 10^9 \ \frac{\text{Nm}^2}{\text{C}^2}\right) \cdot \left(2 \times 10^{-6} \ \text{C}\right)}{(0.4 \ \text{m})^2} \\
& = 2 \times 10^{-6} \ \text{C} & & \quad \text{La intensidad del campo es:} \\
k = 9 \times 10^9 \ \frac{\text{Nm}^2}{\text{C}^2} & & & \quad E = 12500 \ \text{N/C} \\
r = 40 \ \text{cm} = 0.4 \ \text{m} & & & \\
& & & \quad \text{Solución (5)} \\
& & & \quad \text{La intensidad del campo es:} \\
& & & \quad E = 12500 \ \text{N/C}
\end{align*}
\]
La comedia:
Son todas las obras dramáticas que más que un conflicto, presentan un problema. Los problemas son de fácil solución, los conflictos son de difícil salida. El conflicto es colectivo, el tratamiento se hace en forma ligera y su final es feliz.

La palabra comedia proviene, etimológicamente, de: komos = festín popular y Ode = canción; de ahí que la comedia se entienda como la “Canción de festín popular”, esta brotó como manifestación callejera, propia de las clases humildes.

Más tarde, progresivamente, la comedia se fue perfeccionando e incorporando a las clases altas, a la sombra de la tragedia. Entre los siglos VI y V a.C. Epicarmo un escritor, le dio por primera vez forma literaria.

Cuando el género estuvo mejor desarrollado, se organizaron grupos profesionales dedicados a su representación. Lograban así interesar vivamente al público: hacían reír y, de paso, criticaban las malas costumbres. Pronto cosecharon notables éxitos: todo ello contribuyó a que tanto el gobierno como los escritores aristócratas se interesaran por la comedia.

El drama
El drama constituye uno de los principales géneros literarios. Presenta, de manera directa, uno o varios conflictos a través de uno o varios personajes que desarrollan sobre la escena el argumento gracias, principalmente, al diálogo.

Las primeras manifestaciones dramáticas conocidas en el mundo occidental se realizaron en la antigua Grecia. Este era en ese tiempo, de cultura religiosa politeísta, que hace concebir el mundo con dioses que protegen las diversas actividades humanas; por lo tanto, las prácticas religiosas están presentes en su quehacer diario, teniendo una estrecha relación con la naturaleza y una visión religiosa ligada a la tierra.

Las condiciones, el nacimiento y el desarrollo del teatro se produjeron en Atenas entre los siglos VI-IV a.C.

Tomado de https://literaturaone.weebly.com/contenido
La comedia:
Las principales características generales de la comedia son:

- El tema planteado por la comedia es el relato de acontecimiento de la vida normal y corriente
- El propósito de la comedia es que el público enmiende o corrija sus acciones
- El desenlace es feliz, agradable y placentero
- La acción es más complicada que en la tragedia, pero menos grandioso o extraordinaria
- Los personajes son seres del pueblo que cubren sus caras con máscaras para comunicar alegría y placer
- El lenguaje predominante es la prosa, aunque no deje de lado el verso
- El conflicto que plantea es la oposición del ser humano a alguna fuerza de la sociedad

El drama:
Las principales características generales del drama son:

- Temas que plantean acontecimientos de la vida humana comunes y corrientes
- Desenlaces felices o fatales, dependiendo de los conflictos planteados o de la intención del autor
- Acciones que giran en torno a un conflicto de pasiones e intereses que se resuelven generalmente mediante la
razón y la justicia

- Personajes no tan elevados como los de la tragedia, ya que están más cercanos a los problemas de la vida cotidiana
- Un lenguaje sencillo y claro, expresados en verso o en prosa; o en ambos
- Los autores dramáticos deben contar una historia en un lapso bastante limitado, con lo que no se pueda permitir demoras innecesarias

Diferencia entre la comedia y el drama

El lenguaje teatral o dramático

La lengua literaria, como podrás haberte dado cuenta, a partir del análisis de diferentes textos, es polisémica; es decir, tiene muchos significados. En literatura no solo puede variar el significado, según quien lo emita o reciba el signo, según el contexto verbal o extra verbal.

La primera decisión que toma un autor cuando se lanza a escribir - en la antigüedad, a componer oralmente - es seleccionar el tipo de lengua literaria que ha de seguir. De ahí emanan características tales como: por un lado, el tratamiento que le dará al tema y, por otro, la forma del mismo.

En general, la comedia reproduce el habla coloquial y la expresión habitual de una sociedad; en algunas obras podemos encontrar un estilo lingüístico desenfadado y sencillo; en otras, una mofa inteligente, mediante un recurso lingüístico y rebuscado.

En el drama, en cambio, el lenguaje utilizado raya en lo poético. Se utilizan muchos calificativos como una forma exagerar los sentimientos, la belleza y las situaciones presentadas. Sin embargo, en la mayoría de las obras de este subgénero se cumple lo que Lope de Vega llama “el decoro poético”, es decir, cada personaje habla de acuerdo con su condición.

Tomado de https://literaturaone.weebly.com/contenido
Actividad 2:

Completa el cuadro comparativo donde se plasme las diferencias y similitudes entre la comedia y el drama:

<table>
<thead>
<tr>
<th>Comedia y Drama</th>
<th>Similitudes</th>
<th>Diferencias</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Diferencias de contenido y de lenguaje entre la comedia y el drama

<table>
<thead>
<tr>
<th></th>
<th>Comedia</th>
<th>Drama</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intención</td>
<td>El autor tiene la intención de exponer el criterio del espectador los desvíos y los defectos morales del ser humano con el fin de que los rehace en medio de un ambiente festivo y humorístico.</td>
<td>El autor pretende que el espectador reflexione sobre las situaciones de la vida que se exponen, pues los conflictos están tomados del mundo de lo que lo rodea y la intención es que el público los identifique fácilmente.</td>
</tr>
<tr>
<td>Temática</td>
<td>Debilidades humanas convertidas en vicios provocan la oposición del sujeto con su sociedad: alcoholismo corrupción, deshonestidad, etc.</td>
<td>Desde problemas particulares (egoísmo, ira, celos) o locales (pobreza, desempleo), hasta conflictos universales (soledad, desamor, infidelidad).</td>
</tr>
<tr>
<td>Tono (acciones)</td>
<td>Alegres con aire festivos y toques cómicos. El humor es el contexto permanente de este subgénero.</td>
<td>Serio en el contexto de situaciones desventuradas, pero con toques cómicos.</td>
</tr>
<tr>
<td>Desarrollo del conflicto</td>
<td>La acción avanza por las situaciones de enredo o por el carácter firme de los personajes.</td>
<td>Los personajes son quienes provocan el avance de la acción, debido a las decisiones que las circunstancias los motiva a tomar.</td>
</tr>
<tr>
<td>Dimensión del personaje</td>
<td>Personajes simples ficticios, que denuncian fallas de la sociedad o complejos con vicios de carácter (defectos) que los llevan a hacer el ridículo. Casi siempre pertenecen a un nivel social medio o bajo.</td>
<td>Los personajes en general y especialmente los principales, son complejos en la medida de que viven motivados tanto por defectos como por cualidades.</td>
</tr>
<tr>
<td>Resolución del conflicto</td>
<td>En la comedia de enredo se aclara la confusión y hay final feliz. En la de caracteres, el personaje reconoce su vicio y promete enmendarse.</td>
<td>En el desenlace puede ser trágico o feliz, aunque son los personajes quienes conocen su conflicto y en sus manos tiene la posibilidad de resolverlo o no.</td>
</tr>
<tr>
<td>Lenguaje</td>
<td>Sencillo y cotidiano, acorde con la época y las costumbres del lugar. El uso de verso sujeto a métrica y rima, es característica fundamentalmente de las comedias renacentistas, en cambio las comedias contemporáneas dan preferencia a la época.</td>
<td>Coloquial, con expresiones de pensamiento elevado. El drama renacentista también se sujeta a las reglas de versificación; aunque posteriormente se dio preferencia a la prosa, por reflejar con más fidelidad el lenguaje de los personajes. Generalmente responde con veracidad al lenguaje propio del estrato sociocultural del personaje.</td>
</tr>
</tbody>
</table>

Título: Mario y Marta quieren robar

Autor: Alan Rejón

Obra de teatro de 2 personajes

Personajes:
- Mario (Vestido de ladrón)
- Marta (Vestida de ladrona)

Escenografía: Frente a una casa de dos pisos
(De noche, frente a una casa de dos pisos, Mario y Marta entran a escena en puntillas como los ladrones de las caricaturas, vestidos completamente de negro, Mario mira nerviosamente a ambos lados en cada oportunidad que tiene, Marta está más calmada pero se puede notar que algo le preocupa, además del hecho que no confía en Mario quien planeó toda la operación).

–Marta: Mario, expícame qué diablos hacemos aquí, se supone que entraremos esta noche a las casas del norte ya que los dueños se fueron de vacaciones
–Mario: En esta casa hay algo muy valioso que necesitamos sacar, pero ya cállate que nos descubrirán
–Marta: Pero ¿Qué es?
–Mario: Ahorita lo vas a ver, tú no te preocupes está todo perfectamente medido, los que viven en esta casa salieron esta noche a cenar, luego irán al cine y posiblemente verán la nueva de esa saga famosa
–Marta: ¡La de las momias, extraterrestres, hombres lobos y vampiros del espacio?, ¡Bah! La gente debería ver más películas de arte o leer un libro en vez de malgastar el tiempo, y ustedes (al público) no crean que por ser ladrones no tenemos cultura que ya es bastante molesto que nos digan que somos malos por tener que sobrevivir de este digno trabajo para que además nos llamen ignorantes
–Mario: ¿Verdad? Somos ladrones, pero nunca ignorantes, de hecho el 30% de lo que robamos son libros para la biblioteca municipal. Bueno, bueno ya dejando la política de un lado, dime Marta ¿puedes abrir la puerta?
–Marta: Hasta crees... la gente de ahora ya no confía en el prójimo, ahora le ponen a su puerta tres candados, una cadena, una reja de metal inoxidable y su sistema de seguridad con código numérico
–Mario: ¿Por qué nos hacen el trabajo tan difícil? Si todo lo que les quitamos ustedes lo reponen en tres días. ¿Creen que es divertido escalar hasta la ventana y utilizar las herramientas para poder entrar a sus casas?
–Marta (casi llorando): No, es que así no se vale, uno se tiene que ganar la vida haciendo malabares cada vez más y más peligrosos sólo porque la gente de ahora es bien insegura. ¿Ven? Hasta me hacen llorar
–Mario: Te entiendo Marta, te entiendo, tu lloра que yo te apoyo y ustedes (al público) también deberían sentir un poco más de simpatía por nosotros porque seremos ladrones, pero sentimientos tenemos
–Marta: Mario, la puerta está abierta
–Mario: ¿Cómo?
–Marta: La puerta está abierta, entra rápido por lo que necesitas yo te hecho aguas
–Mario: Gracias diosito por escucharnos. (Entra rápidamente a la casa, luego sale con un perro)
–Marta: ¿Qué es eso?
–Mario: Es Michito, mi perro, ya sabes... para la casa
–Marta: ¿Cómo que tu perro?
–Mario: Sí, esta es la casa de mis papas, es que extrañaba a mi perrito
–Marta: ¡Mario!
–Mario: Hay perdón

Fin

Tomado de: https://obrasdeteatrocortas.net/mario-y-marta-quieren-robar/
Bloque VI
Representas el arte teatral en tu comunidad

El arte teatral
El teatro es un género literario ya sea en prosa o en verso, normalmente dialogado, pensado para ser representado; las artes escénicas cubren todo lo relativo a la escritura de la obra teatral, la interpretación, la producción y los vestuarios y escenarios.

En nuestros días la palabra “teatro” reúne un conjunto de significados que van desde el edificio o lugar destinado a las representaciones de obras dramáticas hasta el lugar donde una cosa está expuesta a la consideración de la gente, pasando por el arte de componer obras dramáticas, el escenario o escena, el conjunto de obras dramáticas de un autor o, por último, la literatura dramática como género literario.

Si se considerara al teatro como una rama de la literatura o solo como una forma más de narrativa, se estaría olvidando gran parte de la historia del teatro.

En algunos períodos o culturas se ha dado más importancia a la literatura dramática obras de teatro, pero en otros hay una mayor preocupación por los aspectos de la producción escénica. En algunas culturas se valora el teatro como medio para contar historias; en otras, como religión, espectáculo o entretenimiento.

El teatro se ha utilizado como extensión de celebraciones religiosas, como medio para espacir ideas políticas o para difundir propaganda a grandes masas, como entretenimiento y también como arte. A través de la historia ha desarrollado su actividad en tres niveles al mismo tiempo: como entretenimiento popular de escasa organización, como importante actividad pública y como arte para la élite.

Una representación consta solo de dos elementos esenciales: actores y público.

La representación puede ser mímica o utilizar el lenguaje verbal.

Los personajes no tienen por qué ser seres humanos; los títeres o las marionetas (guiñol) han sido muy apreciados a lo largo de la historia, así como otros recursos escénicos.

Se puede realizar una representación por medio del vestuario, el maquillaje, los decorados, los accesorios, la iluminación, la música y los efectos especiales.

Estos elementos se usan para ayudar a crear una ilusión de lugares, tiempos, personajes diferentes, o para enfatizar una cualidad especial de la representación y diferenciarla de la experiencia cotidiana.

Teatro antiguo
Época antigua
El teatro griego o para ser más precisos esa forma de teatro que conocemos como tragedia había tenido su origen en el ditirambo, una especie de danza que se
realizaba en honor del dios Dionisos. Si tenemos en cuenta que Dionisos era la deidad del vino y la fertilidad, no debe sorprendernos que las danzas dedicadas a él no fueran moderadas ni que sus cultores estuvieran ebrios. A fines del Siglo VII a. C., las representaciones del ditirambo se habían difundido desde Sición, en las tierras dóricas del Peloponeso donde se habrían originado, hacia los alrededores de Corinto, donde ganaron en importancia literaria. Muy pronto, se habían extendido hasta Tebas y hasta las islas de Paros y Naxos.

Para todos aquellos que conocen los muy espaciales efectos del sol de Grecia, de su vino ligeramente resinoso y de ese buen humor espontáneo llamado Kefi, no es tan difícil comprender que esta primitiva danza adquirió tanta popularidad entre los bulliciosos festejantes que celebraban los misterios de la liberación por el vino.

En nada se parecieron las representaciones teatrales de la Atenas de Pericles a las espontáneas ceremonias de la fertilidad de dos siglos atrás. Sin embargo, el teatro tuvo su origen en dichos ritos. Lo atestiguan los mismos vocablos, “tragedia” y “comedia”. La palabra tragedia, del griego tragos (cabra) y odé (canción), nos retrotrae literalmente a los ditirambos de los pequeños poblados, en los que sus intérpretes vestían pieles de macho cabrío e imitaban a las “cabriolas” de dichos animales y donde, muy a menudo, un cabrito era el premio a la mejor representación. Aunque Aristóteles no concuerde con ello, quedan pocas dudas que la palabra comedia deriva de Komazein (deambular por los villorrios) lo que sugiere que los intérpretes -a causa de su rudeza y obscenidad- les estaba prohibido actuar en las ciudades.

Nada queda en las primitivas estructuras que fueron por entonces utilizadas como teatros, aunque los estudiosos basándose en fragmentos de información recogidos en varias fuentes, han logrado ensamblar las distintas partes de un rompecabezas que nos da una imagen bastante confiable de dichos edificios. Sabemos, por ejemplo, que la estructura principal del área de actuación era la orquesta circular (del griego orcheisthai: bailar), donde el coro bailaba y contaba. Es probable que las zonas circulares y pavimentadas que las comunidades rurales griegas usan todavía para trillar el grano -debido a su forma y utilidad- hayan sido las primeras orquestas (este término aún sirve para designar en algunos teatros europeos al área que, luego de quitar las butacas, puede ser utilizada para bailar). Adyacente a esta zona, había un altar para los dioses, donde se recibían y conservaban las ofrendas y un edificio donde los actores se vestían y del que pasaban a la zona circular, reservada para las danzas. Ambos edificios estaban construidos en madera. Ademá, según parece, el público ateniense, que era muy numeroso para permanecer de pie, se sentaba en rampas de tierra dispuestas alrededor de la orquesta. Tiempo después, sobre esas rampas, se construyeron gradas de madera para que el público estuviera más cómodo.

El edificio lateral que actualmente consideramos como típicamente griego, surgió de esos simples elementos. A medida que el teatro aumentó en importancia como espectáculo, el tamaño del altar fue disminuyendo, el edificio de las ofrendas se transformó en la tesorería y el edificio de los camarines se convirtió en skeneo sea el lugar donde los actores representaban (en oposición a la orquesta, donde solamente...
podía actuar el coro). Los camarines también servían como antesala de la cual los actores salían a escena y a donde luego se retiraban.

Muy poco nos ha quedado del vasto repertorio ateniense que incluía cientos de obras teatrales. Solo nos han llegado los nombres de la mayoría de sus autores. De todas maneras, no hay ninguna duda que el teatro en Atenas fue una institución maravillosamente coordinada, cuya función primordial consistía en exaltar la cultura ateniense. En enseñar moralidad y en proporcionar a la ciudadanía su sentido de identidad. En el siglo de Pericles, esa institución habría de alcanzar la perfección artística, llegando a figurar junto con la democracia, la historia, la filosofía y la retórica como un “loro intelectual superior.” Los orígenes del teatro se encuentran en antiguos ritos de origen prehistórico, donde el ser humano empezó a ser consciente de la importancia de la comunicación para las relaciones sociales. Ciertas ceremonias religiosas tenían ya desde su origen cierto componente de escenificación teatral. En los ritos de caza, el hombre primitivo imitaba a animales: del rito se pasó al mito, del brujo al actor. En Grecia nació el teatro entendido como “arte dramático”. El teatro griego evolucionó de antiguos rituales religiosos (kamos): el ritual pasó a mito y, a través de la anámesis, se añadió la palabra, surgiendo la tragedia. A la vez, el público pasó de participar en el rito a ser un observador de la tragedia, la cual tenía un componente educativo, de transmisión de valores, a la vez que de purgación de los sentimientos («catarsis»). Más adelante surgió la comedia, con un primer componente de sátira y crítica política y social, derivando más tarde a temas costumbristas y personajes arquetípicos. Apareció entonces también la mímica y la farsa. Los principales dramaturgos griegos fueron: Esquilo, Sofocles y Euriópides en tragedia, mientras que en comedia destacaron Aristófanes y Menandro.

El teatro romano recibió la influencia del griego, aunque originalmente derivó de antiguos espectáculos etruscos, que mezclaban el arte escénico con la música y la danza: tenemos así los ludiones, actores que bailaban al ritmo de las tibiae una especie de aulos; más tarde, al añadirse la música vocal, surgieron los histriones—que significa «bailarines» en etrusco, que mezclaban canto y mimo (las saturae, origen de la sátira). Al parecer, fue Livio Andrónico de origen griego quien en el siglo III a.C. introdujo en estos espectáculos la narración de una historia. El ocio romano se dividía entre ludi circenses (circus) y ludiscaenici (teatro), predominando en este último el mimo, la danza y el canto (pantomima). Como autores destacaron Plauto y Terencio.

Época medieval
La Edad Media, “enorme y delicada” como la llamara Víctor Hugo, vio morir y renacer muchas cosas. Entre otras, el teatro. Las tinieblas medievales se extendieron primero, sobre el arte escénico para luego prestarle más difusión y relumbre. El corrompido espectáculo romano dio paso a una nueva versión del teatro. Y fue la Iglesia, su enemigo de los últimos tiempos, la que se encargó de ponerla en práctica. Los monasterios bizantinos restauraron la antigua tragedia, con abundantes elementos griegos, pero adaptados a temas cristianos: la Pasión de Cristo, la Caída de Adán, etc.

Pero con el paso del tiempo el telón se volvió a abrir. Tirando de las cuerdas para correrlo estaba la Iglesia, su enemiga desde hace tanto tiempo. La distorsión romana
fue ignorada y la tradición griega tomada como base, los monasterios restauraron la gran tragedia griega, pero con temática cristiana. El pueblo era analfabeta y las historias de la Biblia debían ser difundidas, para eso el teatro era el mejor medio. Quizás puedan considerarse las primeras representaciones teatrales a los Tropos, una tanda de preguntas y respuestas entre el sacerdote y los fieles durante las fiestas especiales.

La falta de espacio en las iglesias y el celo religioso obligaron a trasladar las representaciones, cada vez más numerosas, a la plaza de la iglesia o a cualquier otro punto exterior del templo. La puesta en escena medieval inventó así el decorado simultáneo. En la época de los grandes Misterios (siglos XIV y XV), la puesta en escena alcanzó una rara complejidad. Los tres lados de la plaza estaban cubiertos por las tribunas destinadas al público. En el cuarto lado, y adosado a la iglesia o a algún otro edificio, se erigía un estrado: la escena, el locutorio, que podía alcanzar una extensión de cincuenta metros. El área de la escena, bastante levantada, estaba separada del público por una barrera.

El decorado presentaba, pues, uno junto a otro y simultáneamente, todos los lugares donde la acción debía irse desarrollando. Cada uno de estos lugares, cada elemento del decorado, se llamaba sede o mansión, y tenía su telón particular. Cuando el número de las sedes había de ser muy considerable, se superponían unas a otras.

Unas telas de fondo tendidas tras las mansiones cerraban el horizonte del teatro. A veces, los juegos escénicos eran complicados y exigían numerosos accesorios, así como maquinarias ingeniosas movidas por cabrias y contrapesos. Había apariciones de ángeles y demonios, figuras que escapaban de las llamas infernales donde aullaban los condenados, movimientos del mar, tormentas y tempestades, bestias mecánicas y monstruos que atravesaban la escena. Descúbranse radiantes esplendores paradisíacos y sustitúyense los actores por maniquíes cuando incorporaban personajes que habían de ser sometidos a tormento. La representación de un misterio requería la colaboración de toda la ciudad, de todas las clases, agrupadas en torno al clero, de las Hermandades y de las Corporaciones.

La Edad Media, con todas sus sombras, supo recrear, no obstante, el gusto multitudinario por el teatro. Y aún son muchas las tradiciones que conservan el sabor dramático medieval. Recordamos, entre otras, el Misterio de Elche y la Pasión de Oberammergau. En cuanto a España, el teatro medieval nos llega por las fronteras francesas, con los trovadores provenzales y con la boga de los Misterios de Limoges, de Orleans, etc. La festividad del Corpus, establecida en honor de la Santa Eucaristía por Urbano IV, tiene gran importancia en la historia de nuestro arte dramático. Durante ella se celebraban procesiones casi escenificadas, Misterios, Autos y Milagros, tanto en el interior de los templos como en las calles. El Auto de los Reyes Magos es la primera obra de la historia del teatro español. Aunque ha llegado a nuestras manos incompleta. En cuanto al famoso Misterio de Elche, que aún se representa cada año en esta ciudad, aparte del mérito que supone su vigencia, es de destacar el fabuloso aparato escénico con que se monta su representación, la cual dura dos días.

Suprimidas las representaciones en los templos, la tradición teatral salió a la calle y
corrió a cargo de elementos seglares. Se realizaban en escenarios múltiples, compuestos de entarimados portátiles o de carretas, que a veces se presentaban colocados en serie, uno a continuación de otro, a medida que lo exigían las necesidades de la obra, el paso de un lugar de acción a otro, etc. Ya a comienzos del siglo XIV tenemos referencias de estas representaciones al aire libre. Uno de los más antiguos tablados escénicos de que se tiene noticia es el que el marqués de Villena levantó en Zaragoza en ocasión de unas fiestas populares organizadas para dar solemnidad a una visita real. En este tablado se representaba un castillo, con cuatro torres en las esquinas y una más alta en el centro. Con ayuda de una rueda cobraba movimiento el interior del castillo, que iba mostrando al público, sucesivamente, sus diferentes moradores. El modelo de este artilugio escénico fue pronto imitado en otras ciudades importantes, como Barcelona, Sevilla y Valencia.

La escenografía de estos tablados y carros solía reducirse a unos lienzos pintados que servían de fondo. Sobre este fondo tenían lugar todos los efectos escénicos, conseguidos mediante tramoyas. Paulatinamente se fueron perfeccionando los artificios y juegos espectaculares: terremotos, fuentes de agua auténtica, incendios reales, explosiones, etc., hasta alcanzar su apogeo más tarde, en la gran tramoya de los autos sacramentales calderonianos.

Teatro moderno

A) Realismo

El Realismo tuvo su origen en circunstancias sociales de la segunda mitad del Siglo XIX. Su nacimiento está ligado al ascenso al poder de la burguesía y a la nueva sociedad urbana que se formó como consecuencia del desarrollo industrial. La clase media adquirió importancia como fuerza social e impuso sus gustos en materia literaria, la mayor parte de los lectores pertenecían a esta clase.

El público estaba interesado por los problemas de la sociedad contemporánea, una sociedad que proporcionaba las ventajas del progreso, pero también problemas hasta entonces desconocidos. En este contexto es imprescindible el auge del realismo como técnica y de la prosa narrativa como modelo que permitía reconstruir la realidad y dejaba libertad al escritor para elegir temas, personajes y situaciones. La novela, que gozaba ya por entonces de cierta popularidad, se convirtió en el género en el que se alcanzaron los mayores logros del Realismo.

El Realismo coincide con el desarrollo de la sociedad burguesa y los cambios sociales e ideológicos que se produjeron como consecuencia de la Revolución Industrial y comercial llevada a cabo en el Siglo XIX.

La libertad política y religiosa, la soberanía popular, el sufragio universal y las reivindicaciones sociales fueron motores que desde ese momento movilizaron en toda Europa a las masas de trabajadores y las impulsaron a participar en los acontecimientos políticos. Doctrinas como el Socialismo y el Marxismo tuvieron una rápida aceptación y contribuyeron a crear entre los obreros una viva conciencia de clase.

La clase media salió fortalecida de estos cambios. Adquirió poder material, intelectual
y moral, y pasó a desempeñar una función rectora en la sociedad. Pero también cobró un impulso imparable el movimiento obrero, que prendió con gran fuerza entre el proletariado urbano, surgido como consecuencia de la revolución industrial, sometido a condiciones de trabajo infrahumanas y que sobrevivió a duras penas en las ciudades. Cuando este proletariado adquirió conciencia de clase entró en pugna con la burguesía, que de ser clase revolucionaria que lucha contra el antiguo régimen pasó a ser clase dominante y conservadora.

- Los rasgos fundamentales del Realismo son los siguientes:
 - Procura mostrar en las obras una reproducción fiel y exacta de la realidad
 - Hace un uso minucioso de la descripción, para mostrar perfiles exactos de los temas, personajes, situaciones e incluso lugares; lo cotidiano y no lo exótico es el tema central, exponiendo problemas políticos, humanos y sociales
 - Rechaza el romanticismo, muestra al ser humano objetivamente pues da toques de una realidad dura
 - El lenguaje utilizado en las obras es coloquial y crítico, ya que expresa el habla común y corriente
 - Así como rechaza lo sentimental, de igual forma lo espiritual, dando como resultados toques individualistas
 - Las obras muestran una relación mediata entre las personas y su entorno económico y social, del cual son exponente; la historia muestra a los personajes como testimonio de una época, una clase social, un oficio, etc.
 - Temas relacionados con los problemas de la existencia humana
 - El autor transmite analiza, reproduce y denuncia los males que aquejan a su sociedad, de la forma más verídica y objetiva posible

El teatro moderno nace con el Realismo, del que el Naturalismo es su inevitable acentuación. Cualquier puesta en escena actual de Ibsen, Chéjov u O’Neill permite reconocer referencias a nuestro tiempo y a nuestras preocupaciones, como si fuéramos sus contemporáneos. Esta apreciación la podemos extender a sus modos de exposición dramática, formas y técnicas, y a sus exigencias con respecto a la representación. Sin embargo, entre Ibsen y Buero Vallejo, por poner un ejemplo de realismo actual, median más de ochenta años. No se puede decir lo mismo del teatro precedente, drama romántico y postromántico. A este último hemos de ubicarlo en otro tiempo, un tiempo pasado que nos concierva bastante menos, por muchos atractivos que encierre. Llevamos, pues, más de un siglo de teatro realista, y todavía mantienen su vigencia determinados autores y obras. Al nombre de Scribe hay que añadir el de Emile Augier (1820-1889), que se inicia en la comedia burguesa para pasar a la crítica de la vida moderna en El yerno del señor Poirier (1854), actualización de El burgués gentilhombre de Molièrre. Por su lado, Alexandre Dumas (1824-1895), tras el éxito de su drama postromántico La dama de las camelias, se desviará hacia un prerrealismo moralizante: El hijo natural (1858), Las ideas de Mme. Aubray (1867) y Monsieur Alfonso (1874). En esta breve relación es justo mencionar igualmente a Victorien Sardou (1831-1908), que cultivó todos los géneros y tendencias y a Eugéne Labiche (1815-1888), cuya comedia Un sombrero de paja de Italia (1851) -que aún hoy se sigue representando con éxito anuncia el nuevo vodevil francés, en el que destacará más tarde Georges Feydeau (1862-1921). Estamos a las puertas del Naturalismo, mas con un ir y venir de experiencias que caracterizan la inconstancia

Simbolismo y se profetiza el Surrealismo del Siglo XX. Cinco años después, en 1862, surge el voluminoso relato de Víctor Hugo *Los miserables*, donde el elemento épico, que se adelanta al Socialismo naturalista de fin de siglo, queda enmarcado en una historia melodramática. Estos ejemplos hablan claro de la imbricación de unas tendencias en otras, imbricación que podemos advertir desde la segunda mitad del Siglo XIX hasta nuestros días, con alternados predominios de tales estilos diversos. La segunda constatación del fenómeno antes mencionado es de carácter estético, y se refiere a la inconstancia de esos propios dramaturgos realistas, dentro de este marco estilístico. Flaubert necesitaba escapar del detallismo realista y dar rienda suelta a su fantasía e inconsciente. La mejor prueba de ello la tenemos en la constante reescritura de *La tentación de San Antonio*, inmensa obra del teatro de la imaginación, cuya realización solo las actuales técnicas cinematográficas podrían abordar. O el mismo Zola, que siente la necesidad de descansar, tras su enorme esfuerzo naturalista, para ofrecer historias, como la narrada en *Ensueño*, en la que la criada Angélique, que ha crecido a la sombra de la catedral de provincias, nos muestra sus sueños y fantasías de amor por el Cristo y los santos multicolores de las vidrieras. Por consiguiente, la práctica totalidad de los naturalistas evolucionaron hacia el Simbolismo, de no impedirlo la muerte prematura de algunos, como Chéjov. Naturalismo y Simbolismo influirán en la mayoría de las tendencias dramáticas del Siglo XX.

B) Simbolismo

El teatro de principios del Siglo XX se inclina hacia el Simbolismo. La aparición de las vanguardias determina un cambio radical hasta en la esencia misma de la representación. También comienza el teatro comprometido, con Brecht como principal autor.

En el teatro naturalista, la voluntad de reflejar una realidad objetiva evoluciona hacia la aparición de elementos simbolistas, como ocurre con las últimas obras de Ibsen y Strindberg. Esta evolución es debida a la gran dificultad de representar la auténtica interioridad de los personajes, por lo que se tiende a evocarla o sugerirla con los recursos de la poesía simbolista, o sea, a través de la luz o de la música.

Precisamente en Francia surge el principal grupo teatral del simbolismo, el Teatro del Arte de Paul Fort. Otras figuras que contribuyen a esta estilización simbólica y espiritual son el escenógrafo suizo Adolphe Appia y el teórico británico Gordon Craig, autor de *El arte del teatro*. Ambos se oponen al Naturalismo, y su concepción teatral dista mucho de la mera imitación de la realidad.

Resulta del todo imposible e inadecuado estudiar el teatro simbolista separándolo del movimiento artístico global en el que se produce. El Simbolismo conecta, a este respecto, con tres predecesores de talla: Hegel, en el terreno de la intuición pensante; Baudelaire, en el redescubrimiento de las correspondencias de todos los seres, cosas y
sensaciones que el hombre encuentra en su caminar; Wagner, en el intento de reunión de todas las formas de la expresión artística en un espectáculo total capaz de despertar en el espectador modos y ámbitos de percepción muchas veces dormidos. (Por estas razones, aunque el Simbolismo pueda explicarse en sus inicios como una reacción contra el Naturalismo, o como un cansancio del detallismo realista como veremos en el próximo capítulo, nos ha parecido adecuado presentarlo aquí, en este momento). Como características más importantes del Simbolismo podemos señalar:

- La búsqueda de la Idea por el Hombre, por medio de la intuición y de la meditación. No se tomará como modelo, como ha hecho el arte realista o impresionista, la cosa en su objetividad externa. Hay que penetrar más en lo profundo. Hay que buscar en la mente, en el espíritu, a través de la cultura, de la mitología y de la historia, las ideas y las imágenes capaces de expresar al hombre en su totalidad. El Simbolismo es un modo de conocimiento que antepone el espíritu a la materia. En el principio fue el espíritu, que dirá Dujardin, en la línea de Hegel. De ahí que se interprete también como una reacción contra el realismo-naturalismo de signo materialista, del que es su contemporáneo, particularmente contra Zola.
- Pero para expresar artísticamente la Idea, necesitará del auxilio de la materia. En este punto, los simbolistas adoptan dos caminos distintos: el de la depuración y aquilatamiento de los medios expresivos, aun forzando su sintaxis y sus relaciones semánticas, o bien el de la prolijidad o acumulación en la obra dramática de símbolos y lenguajes. Mallarmé optó por la primera vía, ofreciéndonos solo breves esbozos dramáticos: Herodías, La siesta de un fauno. La vía de la prolijidad y de un cierto barroquismo decadente fue la más seguida, a imitación de lo que en pintura legendaria y ornamental hacía Gustave Moreau.
- Preferencia por los relatos míticos, por las leyendas, antes que por la historia. El mito, aparte su interpretación como ejemplo y símbolo, es más maleable. La historia es más rígida. Cuando los simbolistas acuden a la historia es para mitificarla, aunque para ello sea preciso echar mano de todo tipo de libertades con ella. Así ocurre con todo el teatro de Claudel de signo «histórico».
- La búsqueda de lo simbólico se confunde, en muchas ocasiones, con la búsqueda de lo trascendente, de lo oscuro y muy en particular de ciertos temas obsesivos (el más obsesivo de todos ellos, y el más teatral sin duda, será el de la muerte). Ello explica que los dramaturgos simbolistas sean unos estudiosos de los fenómenos mágicos, esotéricos, religiosos. Más que de religión cabría hablar de teosofía o de gnosis mística, tal como la explica Edouard Schuré en su libro Los grandes iniciados, de 1889, que fue ávidamente leído por algunos dramaturgos simbolistas. Entresacamos esta cita: La gnosis o mística racional de todos los tiempos es el arte de encontrar a Dios en uno mismo, desarrollando las profundidades ocultas, las facultades latentes de la conciencia (...). Las perspectivas que se abren en el umbral de la teosofía son inmensas, sobre todo si se las compara con el horizonte estrecho y desolador en que el materialismo encierra al hombre o con las propuestas infantiles e inaceptables de la teología clerical. Al perciébirlas por primera vez se experimenta el deslumbramiento de lo infinito. Los abismos del inconsciente se abren en nosotros mismos, nos muestran las simas de donde salimos, las alturas de vértigo a las que aspiramos.
- Finalmente, este teatro no puede dejar de ser, de principio a fin, un teatro...
poético; lo que no quiere decir –adviértase bien un teatro en verso. Solo la poesía puede ser el vehículo adecuado para mostrar el arte y sus símbolos, y solo así puede la palabra conjugar-se con las otras artes del espectáculo. La práctica de la escritura poética intensa despierta en el poeta-dramaturgo sus percepciones inconscientes, como ha demostrado el psicoanálisis. Esta escritura está muy cerca del onirismo, de las fantasías de los sueños, procedimiento argumental o temático al que acuden frecuentemente los dramaturgos simbolistas. Pero muchas veces, la palabra, incluso la palabra más poética, traiciona los impulsos del escritor; no por su faz material significante, que puede ser origen de sugerencias de música y sonido, sino por su significado conceptual limitador. Privada de lo conceptual, la música ha podido conservar la magia de piezas simbolistas hoy olvidadas: Preludio a la siesta de un fauno, de Claude Debussy, sobre la citada obra de Mallarmé; Peleas y Melisenda, del mismo Debussy, sobre la obra de Maeterlinck; la ópera de Richard Strauss sobre la obra de Hofmannsthal La Muerte y el Loco; las múltiples composiciones orquestales de Erik Satie, D.

Milhaud, de Honneger sobre piezas de Claudel... Como formas dramáticas más adecuadas para expresar estas constantes y exigencias del teatro simbolista hemos de resaltar:

La agrupación de diferentes lenguajes escénicos: conjunción de música y palabra, recitados, coros; uso de la danza, modos especiales de movimientos escénicos; empleos múltiples de la iluminación, particularmente en su dimensión psicológica y mágica, a fin de crear climas y ambientes de ensueño y de misterio.

Los desdoblamientos y metamorfosis de un mismo personaje, a fin de mostrar sus múltiples caras o los diferentes periodos de su vida; o para proyectar y enfrentar su dimensión real con sus dimensiones más transcendentes.

- Los contrastes de lenguajes, originados por las asociaciones oníricas o los presupuestos desmitificadores del dramaturgo. En Claudel, los muertos bailan temas folklóricos de forma ridícula; el rey de su Juana de Arco en la hoguera se convierte en rey de naipes y cambia el juicio en un ballet de cartas de baraja... Los personajes, las palabras, las imágenes, se asocian multiplicando sus posibilidades combinatorias. Ello explica las dificultades de algunos simbolistas para respetar la duración del espectáculo teatral. Cada obra puede tener su duración propia, la inextricable exigida por sí misma: desde unos minutos hasta varias veladas o jornadas (tomando este término como sesión teatral para un día)

- La forma ceremonial, según la cual los distintos lenguajes escénicos se ordenan ritualmente de acuerdo con un código preestablecido. El carácter ceremonial del teatro de signo artaudiano, manifiesto en autores y grupos como el Living americano, Grotowski, T. Kantor, Arrabal, Genet tiene sus más claros precedentes en los Simbolistas. A su vez, el Simbolismo redescubre por esta vía el carácter sagrado del teatro en sus orígenes. Una vez más, volvemos a los griegos
C) Expresionismo

El Expresionismo es un movimiento de vanguardia que se basa en la expresión de sentimientos subjetivos, más que en una descripción objetiva de la realidad. Los postulados del Expresionismo en el terreno de la literatura, principalmente en la novela y el teatro, se dan igualmente en pintura o música.

Personajes y escenarios se presentan de un modo distorsionado, con la intención de producir un gran impacto emocional. El pintor austriaco Alfred Kubin, miembro del grupo Der Blaue Reiter (El jinete azul), escribió una de las primeras novelas expresionistas. La otra parte. Esta obra ejerció honda influencia en el novelista checo Franz Kafka, así como en otros escritores. Los primeros dramaturgos expresionistas fueron el sueco August Strindberg y el alemán Frank Wedekind, cuya influencia resulta palpable en la siguiente generación de autores de teatro a escala internacional. Entre éstos destacan los alemanes Georg Kaiser y Ernst Toller, el checo Karel Capek, y los estadounidenses Eugene O’Neill y Elmer Rice. El teatro expresionista favoreció la aparición de una nueva concepción de la puesta en escena, los decorados y la dirección. Su objetivo era crear un cuadro escénico perfectamente unificado para aumentar el impacto emocional sobre el público. Las experiencias atonales del compositor Arnold Schönberg también deben considerarse expresionistas. En la década de 1920, el Expresionismo se fundó con el movimiento Dadaísta y después con el Surrealismo. Con la llegada del nazismo, el Expresionismo, como otras manifestaciones vanguardistas, fue perseguido en Alemania acusado de ser un “arte degenerado”. En el terreno literario, los temas fundamentales están inspirados por la visión crítica de la sociedad y los sentimientos de horror y sufrimiento y solidaridad generados por la catástrofe de la Primera Guerra Mundial. Destaquemos, por último, a Bertold Brecht, autor de un teatro de denuncia, comprometido y antiburgués. Es uno de los padres del teatro actual. Su principal aportación es el teatro épico, mezcla singular de lo dramático (personajes que actúan en escena) y lo narrativo (un narrador que comenta los acontecimientos que protagonizan los actores).

D) Existencialismo

El Existencialismo es la respuesta inmediata al sentimiento de vivir en un mundo sin sentido, y la consiguiente angustia, que se experimenta tras la Segunda Guerra Mundial. Sus desoladoras conclusiones son que cualquier acción humana es absurda e inútil, incluidos el sacrificio y el sufrimiento.

Jean-Paul Sartre (1905-1980), filósofo y novelista, escribió también numerosas obras teatrales:

A puerta cerrada (1945): tres personajes que se odian y están condenados a atormentarse mutuamente para descubrir que el infierno es precisamente, la convivencia con los demás.

Las manos sucias (1947): plantea el dilema moral del fin y los medios en un partido político de izquierdas.

El novelista y ensayista Albert Camus (1913-1960), cultivó asimismo el género dramático: Calígula (1938): el emperador romano, tras su aparente locura es
consciente del absurdo de la existencia, pero los demás prefieren vivir engañados y le matan.

Los justos (1950): unos terroristas rusos debaten la licitud de los medios inhumanos, aunque sea para una buena causa.

El existencialismo lleva a escena toda su carga de angustia y ausencia de sentido en la experiencia humana. Las obras de teatro existencialistas llegan a la conclusión de que cualquier acción humana es absurda e inútil, y lleva implícita el sufrimiento y el sacrificio.

A medio camino entre el teatro puramente existencialista y el teatro del absurdo, se sitúan las obras de Jean Genet, con su estilo violento, escandaloso y provocador, próximo también al teatro de Artaud. En El balcón se habla de forma muy irreverente sobre diversas instituciones sociales, como la Iglesia, la política, la banca, etc., a través de un burdel, marco de la acción dramática. Y Las criadas, su mejor obra se basa en un hecho real, el asesinato de una señora adinerada a manos de sus criadas, entre las que hay una compleja y tortuosa relación psicológica.

Los existencialistas expresan el absurdo de la vida mediante un estilo dramático tradicional y un lenguaje lógico. El siguiente paso se da al extender el absurdo vital a la forma teatral, de manera que los elementos dramáticos como el diálogo, el escenario o el vestuario se vuelven absurdos, pierden su sentido racional. La propia acción se basa en situaciones sin explicación y preguntas que quedan sin respuesta. Y es que este teatro, además de la falta de sentido en la vida humana, pretende exponer la dificultad -o imposibilidad- de la comunicación entre las personas.

Elementos del montaje escénico

Montaje escénico es el proceso intermedio entre la interpretación del texto dramático y la representación teatral. Para realizar el montaje, llamada también puesta en escena, se parte del análisis de todos y cada uno de los componentes del texto.

Texto: es la obra dramática donde se plasma la historia.

Dirección: Es el equipo responsable de leer, analizar, interpretar el texto, ya que se encargará de la dirección escénica y de la actuación.

Director: Persona encargada de armonizar los elementos creativos y técnicos de la obra.

Actuación: Es la representación de los personajes de la obra.

Actores: Deben ser individuos con capacidad creativa que se manifieste en el dominio de sus movimientos corporales, de sus gesticulaciones, del manejo de la voz, expresión de ideas y emociones, para poder dar vida al personaje que representa.

Escenografía: Conjuntos de telones, muebles y objetos utilizados para ambientar el espacio donde se desarrolla la acción dramática.
Otros elementos:

Vestuario: Compuesto con las prendas y los accesorios que usan los actores para caracterizar a los personajes, con la finalidad de reflejar su personalidad, su clase social, edad, época, lugar o la moda que impera su entorno.

Maquillaje: Es el modo de combinar la pintura dentro del cuerpo. La pintura de la cara y del cuerpo es un modo de comunicación.

Música: Selección de melodías que sirven como fondo a la representación teatral, tiene el propósito de crear ambientes o acentuar sensaciones y emociones acorde con la historia.

Iluminación: Conjunto de luces que muestran la escenografía y a los actores en las atmósfera de la acción dramática.

Sonido: Constituye los ruidos que ayudan a dar mayor realismo a la obra. Ejemplo: el viento, el canto de los pájaros, un caballo a galope, etc.

Utilería: Conjunto de objetos necesarios para el desarrollo de la acción.

Tomado de
https://drive.google.com/drive/folders/12Pf67Y85uCBldZKkGlyIfE7wHavco-Gu

Actividad 4. Redactarás tu propio texto dramático (comedia o drama), con apoyo de un procesador de texto o a mano en hojas blancas, sobre un tema de interés social en tu comunidad y que ponga en juego la práctica de los valores morales; por último es importante implementar e integrar elementos propios de la estructura del género.
Gobierno de Venustiano Carranza (1917 - 1920)

Vamos a conocer un poco sobre las características de su gobierno. Al inicio del mismo, que es la etapa posrevolucionaria, el país se encontraba convulsionado. En cuanto a la política exterior, el gobierno de Carranza enfrentó graves amenazas, producto del estallido de la Primera Guerra Mundial. Presionado por Alemania y Estados Unidos, Carranza optó por una posición de neutralidad, situación que a la larga le valió el reconocimiento condicionado de Estados Unidos a su gobierno una vez terminada la guerra. En lo interno, enfrentó continuas luchas agrarias y varias huelgas. En respuesta a ello se crearon la Comisión Nacional Agraria, la Secretaría de Agricultura y Fomento y la Confederación Regional de Trabajadores Mexicanos (CROM). Una de las principales complicaciones al interior, fue la aplicación de la Constitución, pues faltaba claridad de qué hacer y cada Estado la aplicaba según sus interpretaciones. Después de promulgada la Constitución en 1917, el presidente Venustiano Carranza convocó para el 11 de marzo del mismo año a elecciones para presidente de la república y para el Congreso de la Unión. Carranza era el candidato del Partido Liberal Constitucionalista (PLC), quien después del triunfo, tomó posesión el 01 de mayo, por lo que su gobierno abarcó el periodo comprendido entre los años de 1917 a 1920, en este último año fue asesinado. Además, tuvo que enfrentar la aparición de innumerables caciques y jefes regionales en diversas partes del país que perturbaban la paz, destacando los movimientos villistas, algunos militares inconformes que habían pertenecido al ejército federal y el movimiento de los zapatistas bajo la dirección de Emiliano Zapata que mediante el ideario del Plan de Ayala unió a sus seguidores. Un hecho importante también fue el asesinato de Zapata en el mes de abril de 1919, que a pesar de este hecho, el movimiento zapatista siguió con mucha fuerza bajo la dirección de Gildardo Magaña, quien finalmente se uniría a Obregón. Cacique. Persona que en un pueblo ejerce excesiva influencia.

Gobierno de Álvaro Obregón (1920-1924)

Su arribo al poder mediante elecciones, marca la hegemonía del grupo sonorense en el poder de 1920 a 1935. En cuanto a la política exterior, buscó el reconocimiento internacional de su gobierno.

De manera particular, surgió un problema con Estados Unidos, dado que el Artículo 27 constitucional decretaba que el subsuelo era de la nación mexicana, lo que afectaba a los estadounidenses que tenían empresas que explotaban el petróleo. Por este motivo, en 1923 se firman los Tratados de Bucareli con Estados Unidos, por medio de los cuales obtuvo el reconocimiento diplomático del país y a la vez se garantizaron las propiedades e
intereses del vecino país en México. De manera general Obregón basó su gobierno en las fuerzas y organizaciones campesinas.

En la política nacional, creó la Secretaría de Educación Pública (SEP), encabezada por José Vasconcelos, iniciando una etapa educativa y cultural muy importante en la historia del país.

Definitivamente, un buen acierto fue la creación de la SEP, pues la problemática en el ámbito educativo era muy grande, principalmente el analfabetismo, por lo que se crearon de forma prioritaria las escuelas elementales y técnicas.

Para ello, la SEP se estructuraría en tres departamentos:
1. El departamento escolar para administrar los diferentes niveles educativos: desde el jardín de niños, hasta la universidad. En 1923 surge formalmente la escuela primaria
2. Departamento de Bibliotecas
3. Departamento de Bellas Artes, pues hubo gran interés por el desarrollo y promoción de actividades artísticas

Otro aspecto que se presentó en el gobierno de Obregón fue el impulso al desarrollo del arte mural en el país, encomendándose a destacados muralistas como Diego Rivera, José Clemente Orozco y David Alfaro Siqueiros la creación de obras de arte en espacios públicos. A lo que se le denominó muralismo.

Mural de Diego Rivera, Denominado “Construcción de un nuevo mundo. La maestra”, que se puede observar en el edificio del tercer piso de la Secretaría de Educación Pública en el Distrito Federal.

Otras características importantes del gobierno de Obregón, se refieren a las demandas constantes de los campesinos que querían que la tierra les fuera entregada. Fue en esta época cuando se inicia el desarrollo de una política agraria para regularizar y organizar el reparto de tierras bajo la forma de ejido, que es una propiedad rural de uso colectivo, a lo que se llamó reparto agrario.
Gobierno de Plutarco Elías Calles (1924-1928).

Al llegar al poder en 1924, Calles conformó un gabinete plural, con personajes destacados como Alberto J. Pani y Manuel Gómez Morín.

Durante su periodo de gobierno, Calles se propuso crear un Estado fuerte con especial atención en la economía. En su política monetaria y crediticia, estableció el Banco de México como banco único de emisión de moneda, lo que favoreció la confianza en el desarrollo económico del país, el Banco de Crédito Agrario y la Comisión Nacional Bancaria que tenía tres objetivos:

1. Supervisar a los bancos
2. Inspeccionar las remesas de fondos y las inversiones
3. Mejorar las operaciones de crédito

También se inició la construcción de obras como el ferrocarril, aspecto que favoreció el comercio interno. En los dos últimos años de su gobierno la situación social y política del país se complicó, derivada de los conflictos entre Obregón y Calles, así como de las protestas ante diversas leyes del gobierno, entre ellas la llamada Ley Calles que afectaba a la Iglesia Católica. La tensión entre el gobierno y la iglesia fue aumentando hasta estallar la rebelión cristera.

La Cristiada, como se le conoce a esta rebelión, duró de 1926 a 1929, fue un movimiento popular, principalmente campesino, que en esencia, buscaba salvaguardar la libertad de culto. Gracias a la intervención de actores internacionales, se llegó a ciertos acuerdos aunque las relaciones entre la Iglesia y el Estado permanecieron distantes hasta la década de los noventa.

Antes de concluir su gobierno, Calles impulsó una reforma a los Artículos 82 y 85 de la Constitución para legalizar la reelección y ampliar el periodo presidencial a seis años. Esta reforma hizo posible la reelección de Álvaro Obregón, quien ya no pudo ocupar el cargo de presidente porque fue asesinado en la ciudad de México por José de León Toral.

En su último informe presidencial, Calles pronunció un discurso en el cual sostuvo que se iniciaba en México la etapa institucional y acababan los caudillos.

El Maximato

Se le conoce así al periodo de gobierno comprendido entre 1928 y 1934. Dado que Álvaro Obregón había sido asesinado. Plutarco Elías Calles se consolidó en el poder ejerciendo una influencia determinante en la toma de decisiones de los tres siguientes presidentes, convirtiéndose en el "jefe máximo" de la denominada familia revolucionaria.
Emilio Portes Gil (1928-1930)

En 1929, siendo Emilio Portes Gil presidente interino, Calles funda el Partido Nacional Revolucionario (PNR), antecesor del PRI, unificando en este partido a todos los grupos revolucionarios del país.

Rebelión escobarista: Inconforme con la designación de Emilio Portes Gil como presidente interino, José Gonzalo Escobar convocó a una rebelión a través del denominado Plan de Hermosillo, que fue derrotada.

Movimiento Vasconcelista: Después de haber sido secretario de Educación Pública y rector de la Universidad Nacional, decidió participar como candidato a la presidencia en 1929, perdió frente a Pascual Ortiz Rubio ante fuertes rumores de fraude electoral.

Durante la gestión de Emilio Portes Gil, la Universidad Nacional alcanzó su autonomía en 1929, convirtiéndose en la UNAM.

Pascual Ortiz Rubio (1930-1932)

En 1920 fue nombrado secretario de Comunicaciones y Obras Públicas en los gabinetes de Adolfo de la Huerta y del general Álvaro Obregón. El presidente Plutarco Elías Calles (1924-1928) lo nombró embajador en Alemania y en Brasil. Dejó este puesto para ser candidato a la presidencia de la República. Tras haber vencido en las elecciones, tomó posesión el 05 de febrero de 1930, pero el mismo día fue víctima de un atentado con proyectiles de bala que lo obligó a dejar el poder en manos de sus colaboradores durante sesenta días.

Ostentó el mando del país hasta el 04 de septiembre de 1932, cuando se vio obligado a renunciar por la oposición del Congreso, de los gobernadores de los estados y del general Plutarco Élias Calles. Durante su gobierno se fundó la Comisión Nacional de Turismo. Se promulgó el 28 de agosto de 1931 la Ley Federal del Trabajo, y ese mismo año México ingresó en la Liga de las Naciones.

Es autor de algunas obras, entre las que destacan Memorias de un penitente (1916); La Revolución de 1910. Apuntes históricos; Historia de Michoacán (1920); Apuntes geográficos del Estado de Michoacán (1917); Carta del Estado de Michoacán; y Memorias 1895-1928 (1963).
Abelardo L. Rodríguez (1932-1934)

Concluye el periodo de gobierno. Fue gobernador de Baja California, tenía más experiencia política y pudo realizar algunos ajustes al Banco de México y otras instituciones de crédito enfocadas a apoyar a las pequeñas y medianas empresas. Se mejoraron vías de comunicación en la red ferroviaria y carretera.

En 1934 impulsó el decreto que estableció en México el salario mínimo, considerado como el ingreso que un trabajador requiere para cubrir sus necesidades mínimas. También reformó el Artículo 3 Constitucional.

Durante este periodo se constituyó Petróleos mexicanos (Petromex).

Lázaro Cárdenas del Río (1934-1940)

Cárdenas era un joven militar que había sido gobernador de Michoacán, su periodo presidencial fue el primero de seis años, sexenio

Cárdenas puso final al Maximato e inauguró una nueva etapa en el país. Colocó al presidente de la República como líder del Partido Nacional Revolucionario (PNR), que en 1938 cambió sus siglas por Partido de la Revolución Mexicana (PRM), modificó su estructura para integrar la representación popular en cuatro sectores: obrero, campesino, popular y militar. Y finalmente, en 1946 se transformó en el Partido Revolucionario Institucional (PRI).

Desde el gobierno, se promovió la organización social en sectores para impulsar un nuevo modelo industrial-urbano. Se crea la Confederación de Trabajadores de México (CTM) y para agrupar al sector agrícola del país se creó la Confederación Nacional Campesina (CNC) y la formación de cámaras empresariales como la Cámara Nacional de la Industria de la Transformación (CANACINTRA). Pues como dice Córdoba (1972), “Cárdenas afirmaba en su plan sexenal, que le sería muy difícil realizar los postulados si no contaba con la cooperación de los masas obreras y campesinas organizadas, disciplinadas y unificadas”.

Inicio del Estado benefactor

Entre las características generales de este modelo de desarrollo económico se puede mencionar la intervención del Estado en la economía y la ampliación de programas y beneficios sociales a favor de los más necesitados. Cárdenas aplicó su política económica con un modelo conocido como nacionalismo económico.

Cárdenas impulsó fuertemente el desarrollo de empresas mexicanas para terminar
con la dependencia económica de países extranjeros, apoyó el desarrollo de pequeñas y medianas empresas mexicanas e inició la nacionalización de recursos minerales. Se fomentó la fabricación de productos, materiales y maquinarias dentro del territorio nacional.

Impulsó la nacionalización de terrenos agrícolas y ferrocarriles, sobresaliendo la expropiación de la industria petrolera, en 1938, además de otras empresas con capital extranjero.

Mientras que en 1917 y 1934 se repartieron 12 millones de hectáreas; de 1934 a 1940 se repartieron 18 millones de hectáreas, se creó el Banco Nacional de Crédito Ejidal y se impulsó un esquema de educación rural sin precedentes.

Lázaro Cárdenas también realizó cambios en la educación, basándose en el modelo socialista que pugnaba porque toda la sociedad mexicana tuviera derecho al estudio. Para ello se construyeron escuelas en todo el país, bajo la lógica de que con el estudio se abrirían más oportunidades laborales y el país crecería lo económica. Se creó el Instituto Politécnico Nacional (IPN).

En política internacional, Cárdenas se solidarizó con España, que en esos momentos vivía una guerra civil, y nuestro país se convirtió en un país seguro por el régimen franquista. En agosto de 1938 intelectuales españoles crearon la casa de España en México. Dos años más tarde este lugar se transformó en lo que hoy es El Colegio de México, Cárdenas también protestó ante la ONU por la invasión de Italia a Etiopía.

Movimientos culturales de la época

En esta etapa del Cardenismo comenzó a desarrollarse la industria cinematográfica, aunque el medio de comunicación más importante fue la radio, ya que era muy accesible a los mexicanos. A través de la radio se transmitían las noticias más importantes, tanto nacionales como internacionales, también las canciones de moda, diversos programas y radionovelas, con bastante éxito.

El muralismo mexicano estaba representado principalmente por Diego Rivera y David Alfaro Siqueiros, quienes mostraban su permanencia en los murales de los edificios públicos. Sin lugar a dudas México estaba viviendo el inicio de un fuerte nacionalismo que resaltaba las raíces de los mexicanos.

Es importante mencionar que el Ateneo de la Juventud, liderado por José Vasconcelos y creado desde Justo Sierra en la década de 1930, había retomado importancia; las misiones culturales se extendían por el país y las artes figuraban principalmente en pintura, música, arquitectura, literatura y fotografía.

En la pintura se resaltan las obras de los muralistas mexicanos a partir de 1920 hasta 1970. Destacan Diego Rivera, David Alfaro Siqueiros, José Clemente Orozco. Entre las obras más conocidas se encuentran: los murales del Palacio de Cortés en Cuernavaca, Sueño de una tarde en la Alameda de Diego Rivera. Orozco trabajó
en cuatro murales, mismos que se plasmaron en el edificio de la Suprema Corte de Justicia de la Nación. Estos murales fueron: La constitución, La legislación, Defensa de la riqueza nacional y Justicia. Siqueiros plasmó en el palacio de Bellas Artes el mural titulado La nueva democracia. Es preciso mencionar las obras pictóricas de Frida Kahlo, quien destaca en su trabajo y como una representante de las mujeres de la época.

En la música se ensamblaban los sonidos mexicanos emanados de los sones huastecos y veracruzanos, provenientes desde épocas coloniales, con los instrumentos de orquestas sinfónicas. En la década de 1940 durante el sexenio de Manuel Ávila Camacho resalta la más notable obra conocida en la actualidad como el Huapango de Moncayo, creado por José Pablo Moncayo.

Es importante mencionar a otros notables músicos de la época que dejaron un gran legado cultural, como Manuel M. Ponce y su obra Sonata Mexicana (1925); Sensemayá de Silvestre Revueltas, o la Sinfonía India de Carlos Chávez.

En lo que respecta a la arquitectura, resaltan las obras de Carlos Obregón, Francisco Serrano, José Villagrán, Enrique del Moral, Juan O’Gorman y Augusto PérezPalacios. El Monumento a la Revolución, el Palacio de Bellas Artes, el Estadio Azteca y la Biblioteca Central de la UNAM, son claros ejemplos de la arquitectura nacionalista mexicana.

En cuanto al cine, México se preparaba para lo que después fue la época de oro, con la participación de algunos directores que fueron a estudiar cinematografía en Hollywood, tal es el caso de Joselito Rodríguez.

La literatura presentó también un avance significativo, puesto que al modificar su narrativa, aprovecharon para promover la novela, aquellas que narran los hechos históricos y hazañas vividas en las luchas. Entre los autores de estas novelas están Mariano Azuela, José Rubén Moreno, entre otros.
Formación para el trabajo: Tecnologías de la Información y Comunicación
Mantenimiento y Redes de Cómputo

ACTIVIDAD 1
Lee, analiza y comprende el texto: “Los elementos de un ordenador”.

En tu libreta realiza un mapa mental y argumenta tu lectura (incluye imágenes), utiliza tu creatividad; el trabajo debe estar limpio y organizado.

Coloca tu nombre, grado, grupo y fecha, y espera las indicaciones de tu docente para la recepción de trabajos.

Los componentes externos de una computadora
Tanto los PC de escritorio como las computadoras portátiles se componen de lo mismo:
- Una pantalla
- Un teclado
- Un mouse un trackpad (otouchpad) para computadoras portátiles
- Y sobre todo: una unidad central, el corazón y cerebro de la computadora

La pantalla de la computadora
La pantalla es la parte de la computadora que va a mostrar el contenido. Gracias a ella, el usuario puede interactuar con el también llamado ordenador. Cuando escribimos con el teclado y usamos el ratón, se refleja en la pantalla y se muestran los datos, información que te ayudará en tus cursos online de computación básica.

La pantalla puede variar de tamaño y se calcula en pulgadas con respecto a la diagonal. Una computadora portátil puede tener una pantalla muy compacta: de unas 10 pulgadas. Las computadoras de escritorio tienen como mínimo 15 pulgadas y pueden alcanzar las 27 pulgadas o más si el usuario opta por una pantalla de televisión.

Las resoluciones y los precios también varían: para una pantalla de 24 pulgadas, por ejemplo, la resolución es de 1920 píxeles por 1080, o alta definición. Las pantallas están conectadas con VGA, DVI o HDMI.

El teclado de la computadora
Uno de los componentes externos de una computadora.
Sirve para escribir texto y así comunicarse con la computadora. Los teclados generalmente tienen alrededor de cien teclas: letras del alfabeto, números, acentos y teclas especiales. Es el descendiente de la máquina de escribir.

Hay varios tipos de teclado: cableado o inalámbrico, con o sin teclado numérico, con funciones adicionales.
Los teclados varían según el idioma: en México, usamos el teclado QWERTY (primeras letras presentes en el teclado), al igual que en Estados Unidos y en la mayoría de los demás países del mundo, pero, por ejemplo en Francia utilizan el teclado AZERTY.

El mouse de la computadora
Con él puedes mover el cursor (la flecha) en la pantalla, apuntar hacia elementos y seleccionarlos haciendo clic.

En la actualidad, los ratones están equipados con un sensor de desplazamiento, normalmente óptico o láser. ¡Pero puede que te acuerdes de los ratones de bola! Los ratones pueden ser con cable o inalámbricos (en este caso, hay que conectar un receptor inalámbrico a un puerto USB en la computadora).

En las computadoras portátiles, el ratón no es obligatorio, ya que cuentan con un touchpad situado al lado del teclado que cumple esta función.

El ratón tiene dos botones para hacer clic, doble clic o clic derecho y una rueda de desplazamiento para descender por la página Web o el procesador de texto.

La unidad central de la computadora
Es la caja que contiene todo el material electrónico esencial para el funcionamiento de la computadora. El teclado, el ratón y la pantalla están conectados a ella. Es por ejemplo, en la unidad central donde antes se insertaba un disco/CD-ROM.

Hoy en día, la mayoría de las computadoras ya no tienen una unidad central propiamente dicha, sino que todo está situado detrás de la pantalla, como es el caso del iMac, o debajo del teclado como en todas las laptops.

La unidad central contiene el procesador (el cerebro), el disco duro (la memoria), la motherboard (la tarjeta madre) y la fuente de alimentación (el corazón y los pulmones).

Los componentes internos de una computadora
Los componentes internos de una PC no son visibles desde el exterior, sino que hay que abrir la carcasa de la computadora para descubrir todos los componentes electrónicos necesarios para su funcionamiento. Por lo tanto, los componentes de un ordenador no están limitados a lo que vemos, sino que también se componen de:

- El procesador (procesador Intel, procesador AMD, procesador Intel Core, microprocesador)
- El disco duro interno (disco duro SSD)
- La motherboard o tarjeta madre (Asus, Intel, Socket o MSI)
- La fuente de alimentación
- La memoria RAM
- La tarjeta gráfica
la tarjeta de sonido y la tarjeta de red

El procesador de la computadora
El procesador o CPU (Central Processing Unit) es el cerebro de la computadora. Se encarga del intercambio de datos entre los componentes (RAM, disco duro, tarjeta gráfica).

Sus tareas principales son:
- Leer los datos en la memoria
- Procesar los datos
- Escribir datos en la memoria

El procesador hace los cálculos permitiendo al usuario interactuar con la computadora y mostrar el sistema en la pantalla. Actualmente, un procesador puede alcanzar hasta 5 Ghz y algunas computadoras están equipadas con varios procesadores.

Pueden procesar miles de millones de datos por segundo y realizar grandes cálculos que permiten que la ciencia y la medicina progresen más rápido. La potencia informática se basa en el procesador. ¿Quién podría pensar que un chip de 4 o 5 centímetros de largo y unos pocos milímetros de grosor puede contener tanta potencia?

El procesador está conectado a la motherboard.

El disco duro de la computadora
Si bien es importante elegir el tipo de procesador, no descuides tampoco la memoria.

Su papel es almacenar los datos de la computadora. El disco duro contiene el sistema operativo como Windows, macOS o Linux (entre otros), los programas instalados y los datos personales del usuario.

Almacena información en forma binaria. En la actualidad, son capaces de almacenar varios Tera bytes de datos (es decir, 1024 gigabytes), que corresponde a cientos de miles de fotografías, miles de películas, millones de documentos de texto.

Hay varios tipos de discos duros:
- Los discos duros clásicos: contienen piezas mecánicas que incluyen una cabeza de lectura que apunta a los discos magnéticos y lee y escribe los datos
- Los discos duros SSD: sin una parte mecánica, leen los datos más rápidamente
- Los discos duros externos: para tener una copia de seguridad de la computadora y su disco duro interno
La **motherboard** de la computadora

Es el componente principal de la unidad central. Centraliza y procesa los datos intercambiados dentro de la computadora usando el procesador. Maneja el disco duro, el teclado, el ratón, la red, los puertos USB.

Es el soporte en el que todos los componentes de una computadora están conectados.

La **motherboard** es un circuito en el que se conecta el conjunto de chips (conjunto de componentes que proporcionan el control de casi toda la motherboard. Los componentes del conjunto de chips están directamente soldados a la motherboard y dictan las particularidades de los procesadores y las memorias que se pueden instalar. Desde 1995, casi todas las placas base tienen formato ATX.

La fuente de alimentación de la computadora

Por supuesto, sin la corriente eléctrica, la computadora no funcionará. Este bloque transforma y suministra la energía necesaria a la motherboard, pero también está conectado a algunos componentes como el reproductor/grabadora de DVD, por ejemplo.

La transformación de la corriente causa una pérdida de energía en forma de calor, por lo que la computadora cuenta con un sistema de ventilación que expulsa aire a través de la parte posterior de la carcasa del ordenador.

Generalmente, es suficiente una capacidad de 400 vatios, pero algunos suministros de energía pueden alcanzar los 1000 vatios.

La memoria RAM de la computadora

La memoria RAM (**Random Access Memory**) la utiliza el procesador, que coloca los datos ahí para procesarlos.

Las peculiaridades de esta memoria son:
- Su velocidad de acceso
- Su carácter temporal: los datos se pierden una vez que la computadora se apaga

La memoria va desde 256 MB a 16 GB y se debe elegir según el procesador, la capacidad de la motherboard y el uso que uno hace de la computadora.

La tarjeta gráfica de la computadora

Para los juegos, es importante contar con una buena tarjeta gráfica. Se encarga de la visualización de la pantalla, liberando el procesador de esta función.
También puede ser reemplazada por el chipset integrado directamente en la motherboard.

Los periféricos de una computadora
La cámara generalmente está integrada en la computadora. Por supuesto, se pueden añadir muchos dispositivos al ordenador para aprovechar todas sus posibilidades:

- Una impresora
- Un escáner
- Un cámara Web (ya integrada en la computadora)
- Una conexión a Internet Wi-Fi
- USB (Universal Serial Bus)
- Una tarjeta de memoria
- Un joystick o algún otro accesorio de videojuegos

Hoy en día, casi todos los dispositivos se conectan a un puerto USB y cuentan con varias entradas, ¡lo cual hace todo más fácil!

ACTIVIDAD 2
Lee el texto sugerido, enlista y clasifica los sistemas operativos.

En tu libreta realiza la lista de tipos de sistemas operativos, y añade el icono que lo identifica.
Puedes dibujar o imprimir, recortar y pegar.
¿Qué es un sistema operativo y para qué sirve?
El equipo de cómputo más completo es inservible si no tiene un sistema operativo que pueda hacerlo funcionar. El sistema operativo es un conjunto de programas que accede y gestiona el Hardware de una computadora y otorga los recursos necesarios a las aplicaciones que lo necesitan según la demanda de los usuarios.
Puede entenderse como un intermediario entre el usuario y el hardware de una computadora. Cada vez que abres un programa en tu computadora, el sistema operativo le permite al programa abrirse, acceder a los recursos que necesite, como el teclado, el mouse o las bocinas; al mismo tiempo que define cuánta memoria podrá utilizar y distribuye la restante entre los demás procesos que está ejecutando el equipo.

El sistema operativo son los programas que dan la base al funcionamiento de un equipo. Y como equipos hay tantos como usuarios que necesitan de sus servicios, hay también muchos tipos de sistemas operativos diseñados para atender todos los requerimientos.

Tipos de sistemas operativos
La mayoría de los objetos electrónicos actuales tienen un sistema operativo para regular su funcionamiento. La televisión de tu casa tiene uno, y el control remoto que utilizas para cambiar los canales es el modo que tiene para interactuar con su sistema.
Los más comunes son los que utilizan las computadoras y los teléfonos celulares. Sin embargo, existen muchos más y son tan simples como los diseñados para manejar un horno de microondas como tan complejos como los que dan instrucciones a los satélites en el espacio.

Sistemas operativos embebidos

Las impresoras requieren un sistema operativo embebido para funcionar.

Los sistemas embebidos o empotrados son todos los que vienen instalados en aparatos que están destinados a hacer unas cuantas funciones muy específicas. Las impresoras, las cámaras digitales, los tableros de los automóviles, las fotocopiadoras, las lavadoras y los módbems utilizan este tipo de sistemas operativos.

Este tipo de sistemas forman parte de los equipos y no pueden modificarse o actualizarse como sí lo hacen los sistemas operativos de las computadoras personales. Sus métodos para ejecutar acciones con ellos son a través de botones en los aparatos, palancas, pantallas pequeñas o Software ejecutable en PC.

Sus respuestas son prácticamente instantáneas, por lo que los sistemas embebidos son la base de la informática en tiempo real.

Los sistemas operativos funcionan en aparatos que tengan un procesador, una memoria principal y una memoria temporal. Esto no siempre termina en un dispositivo con forma de una computadora tradicional, pero aquí hay algunos ejemplos de sistemas operativos embebidos y los equipos que los utilizan.

También hay sistemas operativos para autos. OSEK OS es el sistema operativo que tienen la mayoría de las computadoras de automóviles del mundo. OSEK-VDX es un comité de estándarización creado en 1994 por las automotrices de Europa y tiene una serie de protocolos que se encuentran en marcas como BMW, Renault o Chrysler.

Otro tipo de sistemas operativos para autos es Windows Embedded Automotive, que es utilizado por Ford, Fiat y Nissan. Bajo FreeBSD se han creado sistemas operativos como el de PlayStation3.

El sistema operativo que se encuentra en algunos módems, videoguegos y televisores está basado en FreeBSD, un Software libre que, si bien está presente principalmente en la arquitectura Intel, también se usa en otros aparatos como un sistema operativo empotrado.
Sistemas operativos móviles
Las principales características de un sistema operativo móvil son su facilidad de uso, su simplicidad y su orientación hacia elementos de la movilidad, como el Internet inalámbrico, el Bluetooth y el multimedia.

ANDROID
Android Marshmallow es la versión actual de Android. El sistema operativo móvil más popular del mundo es Android, un Software basado en Linux desarrollado por Google y la Open Handset Alliance, una alianza en la que participan más de 10 empresas de tecnología.

La primera versión de Android fue Apple Pie, dada a conocer en noviembre de 2007. Sin embargo, no estuvo disponible en teléfonos hasta septiembre de 2008, a través del HTC Dream, el primer teléfono con Android. A partir de entonces, el sistema operativo móvil ha lanzado una serie de nuevas versiones.

La última es Android Marshmallow, publicada el 29 de septiembre de 2015 y que corresponde a la versión 6.0 del sistema. Android se caracteriza por poner a sus distintas ediciones nombres de postres en inglés por orden alfabético. La interfaz del sistema es accesible mediante una pantalla táctil.

Entre las características más destacadas de Android se encuentran su capacidad de personalización, por lo que se ha convertido en el sistema más utilizado por las diferentes empresas fabricantes de teléfonos inteligentes, quienes incluyen interfaces particulares a sus equipos.

iOS
iOS 9 fue lanzado en septiembre de 2015. Desarrollado por Apple, iOS es el sistema operativo de los dispositivos móviles de Apple: iPhone, iPod y iPad. La primera versión de iOS fue lanzada en junio de 2007, junto con el primer iPhone, si bien en sus inicios se le llamaba iPhone OS.

Entre las características de este sistema operativo se encuentran su pantalla principal, denominada SpringBoard, que ubica a los iconos de acceso a las diferentes aplicaciones, accesibles mediante gestos táctiles.

iOS es el segundo sistema operativo móvil más utilizado en el mundo, aunque compite con Android en cantidad y calidad de aplicaciones desarrolladas para su plataforma. La última versión del sistema es iOS 9, lanzada en septiembre de 2015.

WINDOWS
El sistema operativo que tiene más del 80% de la cuota de mercado mundial en computadoras es Windows, creado por Microsoft. Desde su primera versión, lanzada en noviembre de 1985, Windows ha desarrollado nuevas versiones de su sistema. Históricamente, las más exitosas ediciones han sido Windows 95, Windows 98, Windows XP y Windows 7, que a la fecha sigue instalado en millones de
computadoras. En la actualidad XP sigue siendo uno de los sistemas operativos más populares en el mundo.

Entre las principales características de Windows, que es un sistema de Software de propietario, está su escritorio, una pantalla de inicio que da acceso a los programas y archivos de la computadora, y el uso de “ventanas”, que son programas ejecutados en un marco propio y que pueden minimizarse para utilizar otros al mismo tiempo.

La versión actual del sistema es Windows 10, lanzado en julio de 2015 y que corrigió muchas de las características de Windows 8 y Windows 8.1 que no fueron del total agrado de los usuarios, como eliminar el botón de Inicio o implementar una interfaz mucho más orientada a dispositivos táctiles que a los usuarios de escritorio.

Microsoft tiene varios años creando sistemas operativos para dispositivos móviles. El primero fue Windows Mobile, lanzado en abril del 2000 y que estaba destinado al sector empresarial a través de PDAs y teléfonos celulares con pantalla táctil, aunque por medio de stylus.

Windows Phone llegó en febrero del 2010 como Windows Phone 7, y en 2012 fue presentado Windows Phone 8. En abril de 2014 llegó Windows Phone 8.1, mientras que Windows 10 es el sistema operativo actual, lanzado en octubre de 2015 y que busca unificar la experiencia de Windows tanto en computadoras como en smartphones, tabletas, Xbox One y dispositivos del Internet de las Cosas.

TIZEN
Tizen es la respuesta de Samsung a Android. Un sistema operativo creado por Samsung como respuesta al éxito de Android. Utilizado por esta empresa en teléfonos como el Samsung Z1, que ha tenido buena respuesta en países como India, también se ha incorporado en los relojes inteligentes Samsung Gear y en algunas Samsung TV.

Tizen está basado en Linux y tiene compatibilidad con las aplicaciones de Android por medio de un software de compatibilidad. Sin embargo, hasta el momento se desconocen los planes de Samsung para lanzar más smartphones con este sistema operativo, y más aún, si tendrá éxito entre los consumidores.

UBUNTU
Ubuntu Touch es un sistema operativo móvil basado en Linux que se puede instalar en los teléfonos con Android por medio de una ROM de software. Algunos de los teléfonos soportados incluyen al Nexus 10, el HTC One X y el Nexus 5, otras marcas han lanzado ya terminales con este sistema de fábrica.

Sistemas operativos de computadoras

Los sistemas operativos para computadoras necesitan administrar muchas cosas a la vez: el uso de la memoria RAM de cada programa, el rendimiento del procesador, el funcionamiento del teclado, mouse y periféricos, y responder ante los requerimientos del usuario en tiempo real.
MAC OS
La abreviatura en inglés para Sistema Operativo de Macintosh, fue creado por Apple para sus computadoras Macintosh para diferenciarse del MS-DOS de Microsoft en los años 80’s. Sus primeras versiones se publicaron a partir de 1985, y en el principio se les conocía con el nombre de “System”.

A partir de System 7.5, el conjunto de programas pasó a denominarse Mac OS. En 1997 fue lanzado Mac OS 8, en 1999 Mac OS 9 y en 2002 Apple lanzó Mac OS X, que cambió el entorno de construcción del sistema operativo por uno con código fuente y diseño distintos. Todas las ediciones de Mac OS X publicadas desde entonces están basadas en Unix.

LINUX
Lo que hace fuerte a Linux como sistema operativo es que a diferencia de Windows o Mac OS, es de código abierto y uno de los principales embajadores de la iniciativa de software libre. Esto significa que su código fuente puede ser modificado por cualquier programador mediante una serie de licencias de uso libre.

Si bien Linux no es un sistema operativo que se encuentre con facilidad en las computadoras de los usuarios comunes, es el favorito de 78% del total de los servidores del mundo, computadoras poderosas que trabajan con grandes cantidades de información, bases de datos y administración de sitios Web.

Este es también el sistema operativo favorito de los hackers. Las distribuciones de Linux más famosas y utilizadas son Ubuntu, desarrollado por la empresa Canonical; Kali Linux, y Debian, creado por una comunidad de desarrolladores que lo actualizan constantemente.

Tanto Linux como Mac OS se diferencian de Windows en su menor cantidad de ataques informáticos y virus, que generalmente son desarrollados para ejecutarse en los equipos del sistema operativo de Microsoft y no son compatibles con los demás sistemas.

Linux se volvió más popular con la creación de Android, que está basado en su código abierto, mientras que empresas como Amazon, Google, Facebook, Twitter y Wikipedia utilizan servidores que funcionan con Linux o están basados en este núcleo.
ACTIVIDAD 3
Lee el texto Dispositivos de almacenamiento

¿Cómo formateo un USB?
Una vez leído el texto, en tu libreta dibuja y realiza una pequeña reseña de ellos.
Construye un Algoritmo sobre como formatear un USB.

Dispositivos de almacenamiento informático.

Permite a la computadora registrar información de forma semipermanente de modo que pueda usarse más adelante por una misma computadora o por otras.

TIPOS DE DISPOSITIVOS DE ALMACENAMIENTO
- Tarjetas perforadas
- Discos duros
- Almacenamiento por cintas
- Disquetes
- CD-ROM
- DVD
- Memorias USB (Flash)
- Tarjetas de memoria
- Disco virtual

1. TARJETAS PERFORADAS. El primer dispositivo de almacenamiento fue la tarjeta perforadora, la cual es una cartulina que está perforada con agujeros en distintas posiciones. Utiliza un tipo de sistema que se le denomina binario que consiste en ceros y unos, por ejemplo si queremos almacenar los datos de una persona podríamos pasar todos sus datos escritos a binario, y una vez en binario, hacer las perforaciones necesarias en la tarjeta. Esta tarjeta es pues un sistema de almacenamiento. Se puede decir que es la precursora de los CDs por ejemplo, pues estos usan un sistema parecido pero leído por láser y a niveles microscópicos.

2. DISCOS DUROS. En 1956, se introdujo como un componente de IBM RAMAC la primera unidad de discos duros 350. Requirió 50 discos de 24 pulgadas para guardar cinco megabytes (millón bytes, se abrevió MB). Un disco rígido (también conocido como disco duro en algunos países) es un dispositivo que se utiliza en computadoras y otros aparatos para almacenar información digital.

3. ALMACENAMIENTO POR CINTAS. La cinta magnética fue el medio usado para la primera grabación de un ordenador en 1951 en el Eckert-Mauchly UNIVAC I (el primer ordenador personal). La unidad de cinta (dispositivo de grabación) fue una delgada cinta de metal de media pulgada(12.7mm) de ancho, consistente en una aleación de bronce y fósforo con níquel-plata(llamado Vicalloy).

4. DISQUETES. En 1967, IBM encomendó a su centro de desarrollo de almacenamiento de San José California una nueva tarea:
desarrollar un sistema sencillo y barato para cargar microcódigo en los System/360 de sus ordenadores centrales. En el Centro Educativo Jean Piaget se inventó el disquete, su nombre original era pizquet. En los años 80 gozaron de gran popularidad. Los programas informáticos y los videojuegos para PC se distribuían en este formato. Ya que en aquella época los programas y juegos no llegaban ni a 1 MB, cabían perfectamente en los disquetes.

6. MEMORIAS USB (flash). Estas Memorias fueron diseñadas como prototipo en 1995, en 1996 se le reconoce el Invenro a Dov Moran, trabajando en la empresa Israly M-System (Comprada por SanDisk en 2006). Un poco más tarde otras empresas diseñaron las suyas, a pesar de ser un invento de más de 10 años, pasaron casi ocho años para comenzar su popularización, pues el Famoso Disco de 31/2, tuvo su auge entre 1994 y 2004. Las Memorias más conocidas y populares son las DataTraveller desde 500 MB, hasta 12GB.

7. TARJETAS DE MEMORIA (SD). Las tarjetas microSD o Transflash corresponden a un formato de tarjeta de memoria flash más pequeña que la MiniSD, desarrollada por SanDisk; adoptada por la Asociación de tarjetas SD bajo el nombre de microSD en julio de 2005. Mide tan solo 15 × 11 × 1 milímetros, lo cual le da un área de 165 mm². Esto es tres veces y media más pequeña que la miniSD, que era hasta la aparición de las microSD el formato más pequeño de tarjetas SD, y es alrededor de un décimo del volumen de una tarjeta SD. Sus tasas de transferencia no son muy altas; sin embargo, empresas como SanDisk han trabajado en ello, llegando a versiones que soportan velocidades de lectura de hasta 10 Mb/s. Actualmente, ya existen tarjetas microSD fabricadas por Panasonic que alcanzan los 90 Mb/s de lectura y los 80 Mb/s de escritura.

8. DISCO VIRTUAL. El Disco Virtual o NUBE es un servicio a través del cual dispone de un espacio en nuestros servidores, donde puedes guardar información (Word, Excel, PowerPoint, etc.) con las respectivas garantías de seguridad y privacidad. La finalidad de este servicio es doble: por un lado, que los usuarios puedan tener accesible sus ficheros desde múltiples dispositivos, y una segunda vertiente consistente en que sus ficheros estarán respaldados on-line, por lo que en caso de problemas con datos de su equipo (ej: fallo de disco duro, robo de portátil) sus datos sigan estando accesibles.
Cómo formatear un pendrive (usb) en Windows

La manera más sencilla de dar formato a un pendrive USB en Windows es abrir una ventana del explorador de archivos, pulsar con el botón derecho sobre la unidad que queremos formatear, y pulsar sobre «Formatear…».

Aparecerá una nueva ventana en la que podremos seleccionar la capacidad, el sistema de archivos (tipo de formato), tamaño de la unidad de asignación (es recomendable dejarlo con el valor que viene por defecto), la etiqueta (nombre de la unidad) y si queremos dar formato rápido o completo.
Una vez seleccionados los parámetros deseados, pulsamos sobre Iniciar y en pocos segundos tendremos el pendrive formateado y vacío en el tipo que hayamos seleccionado.

ACTIVIDAD # 4

Lee las reglas de seguridad e higiene de un equipo de cómputo.

Lee los tipos de mantenimiento del ordenador.

En tu libreta realiza un resumen acerca de las reglas de seguridad e higiene en el equipo de cómputo.

Realiza un cuadro comparativo del mantenimiento correctivo y preventivo.

Transcribe a tu libreta el cuadro de la actividad 4.

Higiene y seguridad al uso de un equipo de cómputo

1. Las computadoras deben de estar en un lugar fresco y con el mueble ideal para estas
2. La corriente eléctrica debe de ser confiable y estable
3. No debe de encontrarse junto a objetos que puedan caer sobre ella tales como ventanas, mesas, sillas, lámparas, etc.
4. El CPU no debe de estar en el piso, debe de estar en el mueble donde se tiene el resto del equipo
5. Cada equipo de cómputo debe de estar conectado a un regulador
6. El equipo debe de apagarse de manera correcta siguiendo las indicaciones: Apaga el sistema, el monitor y desconecta el equipo mientras no lo estés usando
7. No se deben dejar discos en la unidad de CD
8. No se debe de consumir alimentos y bebidas en el lugar donde se encuentra el equipo de cómputo
9. El equipo debe estar cubierto por fundas especiales de cómputo para que no penetre el polvo sobre él
10. Limpiar regularmente el teclado, el ratón y el mousepad, para liberar de polvo el espacio de desplazamiento
11. No deben de desconectarse ningún dispositivo sino ha sido apagado el CPU

Para tener una mejor higiene del equipo de cómputo es:
12. No comer o beber en la computadora
13. Siempre tener limpia el área de la computadora
14. Cubrir la computadora para que no se ensucie [Apagar los equipos estabilizadores para no generar carga eléctrica]

Con todo esto, tus dispositivos y tu computadora se mantendrán en excelente funcionamiento.

Mantenimiento preventivo y correctivo de computadoras

1. **Introducción.** El mantenimiento preventivo y correctivo de una computadora es muy importante, ya que con el podemos mantener en buen estado nuestra computadora y aprovechar su máximo rendimiento. El objetivo es conocer cuan importante es mantener siempre nuestras computadoras y hacer el mantenimiento cada tres o seis meses.

2. **Concepto de mantenimiento preventivo.** Consiste en encontrar y corregir los problemas menores antes de que éstos provoquen posibles fallas. En un computador, el mantenimiento es la revisión periódica de ciertos aspectos, tanto de Hardware (Parte física de los computadores) como Software (Programas que tienen instalados los computadores), para corroborar el desempeño del sistema, la integridad de los datos almacenados o verificar la de velocidad posible del procesamiento.

3. **Razones para realizar un mantenimiento preventivo.** Los computadores funcionan muy bien y están protegidos cuando reciben mantenimiento periódico (cada seis meses). Si no se limpian y se organizan con frecuencia, el disco duro se llena de información, el sistema de archivos se desorden a y el rendimiento general del computador disminuye (se pone lento). Si no se realiza periódicamente un escaneo del disco duro para corregir posibles errores o fallas, una limpieza de archivos y la desfragmentación del disco duro, la información estará más desorganizada, desprotegida y será más difícil de encontrar y recuperar si el computador presenta alguna falla.

4. **Concepto de mantenimiento correctivo.** El mantenimiento correctivo de Hardware es la reparación o el cambio que se le hace a algún componente de la computadora cuando se presenta una falla. Este mantenimiento consiste en una pequeña soldadura de la tarjeta de vídeo, etc. o simplemente en el cambio total del monitor o un mouse, etc. A diferencia del mantenimiento...
preventivo, el correctivo se lleva a cabo cuando la falla ya se presentó, y en el preventivo, como su nombre lo dice, es para prevenir alguna falla. Este mantenimiento, generalmente tiene una duración de una a cinco horas, pero dependen del problema y de la rapidez del equipo.

5. Tipos de mantenimiento correctivo. Mantenimiento correctivo no planeado: En este tipo de mantenimiento es cuando se corrige la falla que presenta nuestra computadora, pero como su nombre lo indica este es no planeado, quiere decir que la falla aparece cuando no se espera, a veces ni origen sabemos de esta falla presentada. Mantenimiento correctivo programado: Este tipo de mantenimiento se corregen fallas pero con hechos ciertos, en este mantenimiento no es necesario realizarlo en el mismo momento que presenta el problema, puedes resolver el conflicto y si no es urgente lo dejas para después y la computadora está bien, pero con esa pequeña falla.

6. Reflexiones. Vivamos cada día como si fuese el último, buscando dar amor y felicidad a los que nos rodean, y aprovechando las oportunidades que tenemos de ser buenos los unos con los otros.

7. Conclusión: Lo aprendido con este trabajo es saber cómo funciona el mantenimiento preventivo y correctivo de computadoras y cada cuánto tiempo hay que hacerlo para que la computadora funcione correctamente.

ACTIVIDAD 5

Cómo construir una red alámbrica e inalámbrica y su configuración.
Transcribe los pasos sugeridos en la lectura de abajo, y anota lo más importante de video que se te presenta. Transcribe en tu libreta, el dibujo de la actividad 5.

Pasos para instalar red alámbrica e inalámbrica:

1. Paso 1 BARRA DE TAREA. Buscamos el icono de redes, que se encuentra en la barra de tareas y así podemos saber si la máquina tiene la red desconectada o no ha sido instalada
2. Paso 2 BÚSQUEDA DE LA RED. Al encontrar el icono, damos clic derecho sobre él y a continuación nos saldrá un menú textual, con varias opciones, las cuales debemos seleccionar “ver redes inalámbricas disponibles”
3. Paso 3 ELEGIR LA RED. En la ventana de conexiones de redes inalámbricas, debemos seleccionar la opción “elegir una red inalámbrica” luego, seleccionamos la opción “actualizar lista de redes” con esto podemos ver la lista de redes que tenemos a nuestro alcance
4. Paso 4 REDES DISPONIBLES. Luego de realizar el tercer paso aparecerá la ventana con la siguiente imagen que indica que estás buscando redes disponibles en tu computadora. Para que puedas efectuar los siguientes pasos
5. Paso 5 DATOS PARA LA CONFIGURACIÓN. Como ven se ha encontrado una red inalámbrica disponible. En este caso el nombre de prueba es “MAESTROS DE LA WEB” luego seleccionamos el botón conectar
6. Paso 6 CLAVE. Al intentar conectar a esta red inalámbrica, nos solicita la clave de red para acceder a ella la introducimos y luego seleccionamos nuevamente el botón conectar
7. **Paso 7 ASISTENTE DE CONEXIÓN.** El asistente de conexión nos intentará conectar a la red seleccionada. Se completará si la clave introducida es correcta.

8. **Paso 8 RED CONECTADA.** Si la red ha sido conectada exitosamente nos aparecerá los detalles de la conexión en la siguiente ventana.

9. **Paso 9 SELECCIONAR ESTADO.** Regresamos a la barra de estado nuevamente realizando el paso 2 y seleccionamos nuevamente el “estado”

10. **Paso 10 VELOCIDAD DE CONEXIÓN.** En la ventana de conexiones de las redes inalámbricas nos muestra la característica de conexión: estado, red, duración velocidad, intensidad de señal

11. **Paso 11 PROPIEDADES.** Al seleccionar el botón de propiedades nos aparecerá en la misma ventana el adaptador de red que se está utilizando y los tipos de componentes de red.

12. **Paso 12 CARACTERÍSTICAS.** En la pestaña “redes inalámbricas” podemos definir, si esta conexión que creamos se conectara automáticamente. También podemos agregar automáticamente. Agregar nuevas conexiones quitar o ver las propiedades.

ACTIVIDAD 6

Observa el video, y describe en tu libreta la forma de cómo formatear el disco duro e instalación del sistema operativo.

Construye un algoritmo en donde expliques paso a paso como se formatea un disco duro de un ordenador con sistema operativo Windows.

Construye un algoritmo en donde expliques paso a paso como se instala un sistema operativo. (Windows)

Formateando un disco duro.

Formatea un disco duro de forma rápida con Windows. Tal y como hemos avanzado anteriormente, existe la posibilidad de formatear un disco de forma rápida. En este apartado repasaremos las dos formas principales de hacerlo, ya sea directamente desde el menú de dispositivos o usando ‘Administración de discos’.

Cómo hacer un formateo rápido desde ‘Este equipo’. La forma más rápida de formatear un disco duro es yendo a ‘Este equipo’. Puedes acceder a esta carpeta con la herramienta de búsqueda que encontrarás al lado del botón de inicio de Windows. Puede que incluso tengas un atajo en tu escritorio.

A continuación, selecciona el disco duro que quieras formatear y haz clic derecho. Del menú desplegable que te debería aparecer, elige la opción ‘Formatear’.
Cuando se te abra una nueva ventana flotante, y antes de darle a ‘Iniciar’, repasa los valores que te aparecerán de forma automática y que hacen referencia al sistema de archivos y al tamaño de unidad de asignación.

En términos generales puedes dejar esta configuración tal y como te aparece, aunque deberás asegurarte de que NTFS está seleccionado como sistema de archivo y que sale la unidad de asignación por defecto. Tendrás el disco formateado en menos de un minuto.
Métodos de instalación de un sistema operativo

1. El SO se instala en una sección definida de la unidad de disco duro, denominada partición de disco. Existen varios métodos para instalar un SO, estos dependen del Hardware del sistema, el SO elegido y los requerimientos del usuario

2. INSTALACIÓN LIMPIA se realiza en un sistema nuevo o donde no exista ruta de actualización entre el SO actual y el que se está instalando. También se lleva a cabo una instalación limpia cuando el SO existente se ha dañado de alguna manera. ACTUALIZACIÓN Si se conserva la misma plataforma de SO, por lo general es posible realizar una actualización. Se preservan las opciones de configuración del sistema. Sólo se reemplaza los archivos del SO antiguo por los del nuevo

3. ARRANQUE MÚLTIPLES puede instalar más de un SO en una computadora para crear un sistema de arranque múltiple. Cada SO tiene su propia partición y puede tener sus propios archivos y sus propias opciones de configuración. VIRTUALIZACION La virtualización es una técnica que se suele implementar en servidores. Permite ejecutar varias copias de un mismo SO en el mismo grupo de hardware, lo cual crea varias máquinas virtuales

4. La instalación de Windows 7 es muy sencillas, agrandes rasgos o solo tiene que seguir los pasos marcados por el mismo Software de instalación requerimientos mínimos: 1.- Procesador de 32 bits (x86) o 64 bits (x64) a 1 gigahercio (ghz) o más. 2.- Memoria RAM de 1 gigabyte (gb) (32 bits)

5. Programas de aplicación

6. Crear una red en Windows 7 es muy sencillo, por ejemplo para crear una red doméstica donde se comparten documentos, impresoras y otras cosas, solo accedemos a panel de control en la sección de centro de redes y recursos compartidos y establecemos red) o memoria RAM de 2gb (64 bits). 3.- Espacio disponible en disco rígido de 16 gb (32 bits) o 20 gb (64 bits). 4.- Dispositivo gráfico directx 9 con controlador wddm 1.0 o superior.
7. Linux está pensado para poder trabajar en un ordenador personal corriente, por tanto cualquier configuración Hardware estándar será aceptada por Linux sin problemas. Requerimientos: 1.- Linux funciona con cualquier procesador Intel desde el 386 sx hasta el Pentium más moderno, Linux posee soporte para sistema con más de un procesador Intel. 2.- Linux puede funcionar con un mínimo de 4 mb de memoria RAM pero siempre será mejor cuanta más memoria RAM se tenga. 3.- El espacio requerido por Linux depende mucho de la distribución elegida y el número de paquetes que se vaya a instalar, puede necesitar de 400mb a 700mb

8. Una vez que se termina la instalación de cualquier SO, lo siguiente es la configuración del mismo, ya sea en motivos de seguridad o personalización, activación del SO, instalación de controladores u otros doméstica

9. Seleccionamos lo que deseamos compartir y para finalizar, nos dará una clave que es con la que otros equipos podrán conectarse a la red.
7. Recursos didácticos

Matemáticas IV

- Funciones polinomiales de grado cero, uno, y dos
- https://www.dgb.sep.gob.mx/servicios-educativos/telebachillerato/CUADERNOS/4-Semestre/4-MATEMATICAS-IV.pdf
- Funciones, conceptos básicos #1. Aprende matemáticas
 - https://www.youtube.com/watch?v=PPuWf2cDEKc
- Qué es función | Concepto de función
 - https://www.youtube.com/watch?v=Ll7xfe3HoZE
- Matemáticas profe Alex
 - https://www.youtube.com/channel/UCanMxWvOoiwtjLYm08Bo8QQ/playlists?view=50&sort=dd&shelf_id=3

Biología II

- Teorías evolutivas
 - El origen de las especies: construyendo una teoría | HHMI BioInteractive Video
 - https://www.youtube.com/watch?v=WxG61ZD2nn0
 - Ciencia express: selección natural
 - https://www.youtube.com/watch?v=Cz6VTlQksE
 - Darwin. Un viaje al fin del mundo
 - https://www.youtube.com/watch?v=xY_Jw_288c

- Clasificación de los seres vivos
 - https://www.youtube.com/watch?v=L5d6MdJ-pRs
 - https://www.youtube.com/watch?v=XJ0_ecH5Qrc
 - https://www.unse.edu.ar/archivos/2_Modulo_Biologia.pdf

Física II

- Video sobre seis experimentos de electrostática
 - https://youtu.be/Fgh1OGwt2Lc
- Video sobre experimento de Electrodinámica
 - https://youtu.be/2MP-3kkW9xY
- Video sobre conceptos de elecrodinámica
 - https://youtu.be/3AKty3-vcw8
- Ecuación de continuidad
Antecedentes históricos de la electricidad
http://recursostic.educacion.es/eda/web/tic_2_0/informes/perez_freire_carlos/temas/personajes.htm

Literatura II

- Análisis de la Comedia y Drama
 https://www.youtube.com/watch?v=wwB2S21-u_c
- Historia del teatro
 https://www.youtube.com/watch?v=VeDBN1mX_Ec
- Elementos y Recursos de la representación teatral
 https://www.youtube.com/watch?v=VgWAOeBa-xY

Historia de México II

- Gobiernos Posrevoolucionarios
 https://sites.google.com/site/historiademexicoems/3-3-los-gobiernos-posrevoolucionarios
- El gobierno de Álvaro Obregón
 https://sites.google.com/site/historiademexicoems/3-3-1-el-gobierno-de-alvaro-obregon
- El gobierno de Plutarco Elías Calles
 https://sites.google.com/site/historiademexicoems/3-3-2-el-gobierno-de-plutarco-elias-calles
- El gobierno de Lázaro Cárdenas
 https://sites.google.com/site/historiademexicoems/3-3-3-el-gobierno-de-lazaro-cardenas
- Breve reseña del México Posrevoolucionario
 https://www.youtube.com/watch?v=iMao24Fob2w
- México Posrevoolucionario
 https://www.youtube.com/watch?v=7OuyPQ2_4Eo
Formación para el trabajo: Tecnologías de la Información y Comunicación

- **Redes de cómputo**
 - Componentes de la computadora
 https://youtu.be/hKt_wtGIF8Y
 - Los sistemas operativos ¿Qué son?
 - Evolución de los dispositivos de almacenamiento
 https://youtu.be/V7qg1WGSdvc
 - Medidas de seguridad para equipos de cómputo
 https://youtu.be/I7OEG1qclapl
 - Cómo crear una red alámbrica/inalámbrica
 https://www.youtube.com/watch?v=_TZop2NIOAM&feature=youtu.be
 - Cómo formatear un disco duro (guía básica)
 https://www.youtube.com/watch?v=vWILEMA5V0&feature=youtu.be
 - Cómo instalar un sistema operativo desde 0
 https://www.youtube.com/watch?v=DozgQ1CSU9E&feature=youtu.be
 - Video de la actividad #1:
 https://youtu.be/hKt_wtGIF8Y
 - Video de la actividad #2:
 - Video de la actividad #3:
 https://youtu.be/V7qg1WGSdvc
 - Video de la actividad #4:
 https://youtu.be/I7OEG1qclapl
 - Video de la actividad #5:
 https://youtu.be/_TZop2NIOAM
 - Video de la actividad #6:
 https://youtu.be/vWILEMA5V0
 https://youtu.be/DozgQ1CSU9E
8. Elementos de confirmación de conocimientos

Matemáticas IV

Ejemplo 1

Graficar la función $f(x) = 5$, determinar su dominio y rango.

La función también se puede expresar $y = 5$, por lo tanto su gráfica es una recta horizontal a la altura de 5, como se muestra en la siguiente figura 6.

Dominio $(-\infty, \infty)$, se debe recordar que el dominio de un polinomio siempre será $R = (-\infty, \infty)$

Rango $\{5\}$

Figura 6. Función $f(x) = 5$

Ejemplo 2

Graficar la función $g(x) = -\frac{7}{2}$, determinar su dominio y rango. La función constante puede ser cualquier número real, en este caso es un número racional, el cual equivale $y = -3.5$, en la figura 7 siguiente se muestra el resultado de la función.

Dominio $(-\infty, \infty)$

Rango $\{-\frac{7}{2}\}$

Figura 7. Función $g(x) = -\frac{7}{2}$

Ejemplo: $f(x) = 2x + 3$, gráfica figura 8
Figura 8. Función \(f(x) = 2x + 3 \)

Donde
\[
\begin{align*}
 m &= 2 \\
 b &= 3
\end{align*}
\]

Existen métodos para graficar funciones lineales:

- Sustitución de valores.
- Intersección con los ejes coordenados.
- Parámetros \((m/b)\).

Cuando se tiene la regla de correspondencia de una función lineal es sencillo trazar la gráfica, ubicando primero el punto que describe la ordenada en el origen y a partir de él, mediante la pendiente, se ubica el segundo punto.

Ejemplo 1

Graficar la función \(f(x) = \frac{4}{3}x - 1 \) figura 9

Solución. Cuando se observa la función la pendiente es:

\[
m = \frac{4}{3}
\]

Y la ordena del origen es

\[
b = -1
\]

La cual proporciona la intersección con el eje \(Y \).

Como la pendiente es \(m = \frac{4}{3} \), a partir del punto se desplaza 3 unidades a la derecha y 4 unidades hacia arriba, ya que en el cociente de la pendiente, el numerado es el incremento vertical y el denominador es el incremento horizontal.
Los parámetros dicen mucho del comportamiento gráfico de la función, como es el caso de la pendiente, cuando es mayor que cero y menor que uno, su ángulo de inclinación es mayor que 0 y menor que 45°; cuando es mayor que uno su ángulo de inclinación es mayor que 45° y menor que 90°; en el caso de tener pendiente negativa, el ángulo de inclinación es mayor de 90° y menor que 180°.

Ejemplo:

Comparar las gráficas de las funciones $f(x) = x^2$ y $g(x) = 3(x - 2)^2 - 4$

Solución. Al tomar los valores quedan de la siguiente manera.

a) $f(x) = x^2$

![Figura 12 de la función $f(x) = x^2$](image)
Si la función se describe en forma estándar entonces se obtendrá

\[f(x) = 1(x - 0)^2 + 0 \]

Al compararse con la forma \(f(x) = a(x - h)^2 + k \), se define lo siguiente:

- \(a = 1 \)
- \(h = 0 \)
- \(k = 0 \)

El coeficiente principal que es \(a \), es el que determina la abertura de la parábola si se considera una unidad a la derecha y una a la izquierda, los puntos correspondientes están una unidad hacia arriba.

Si se realiza el mismo análisis para la función \(g(x) \), los parámetros se mostrarán de la siguiente manera:

\[g(x) = 3(x - 2)^2 - 4 \]

Donde

- \(a = 3 \)
- \(h = 2 \)
- \(k = 4 \)

Función polinomial de tercer grado:
La función polinomial de tercer grado es toda aquella función que se puede escribir de la siguiente forma:

\[y = a_3x^3 + a_2x^2 + a_1x + a_0 \]
Dondeas≠0. La función polinomial de tercer grado también se conoce como función cúbica.

Ejemplo 1

La función polinomial de tercer grado más sencilla es

\[y = x^3 \]

Grafícala, encuentra sus raíces, dominio y contradominio

Empezamos calculando sus raíces. Para que \(y = 0 \) se requiere que \(x^3 = 0 \). En palabras esto nos está diciendo que debemos encontrar los números que al multiplicarlos por sí mismo tres veces obtengamos cero. El único número que satisface la condición anterior es \(x = 0 \). Esta es la única raíz de la función

Para encontrar el dominio recuerda que el dominio de cualquier función polinomial es el conjunto de los números reales.

El contradominio se calcula de la siguiente manera:

- Observa que cuando \(X \) es positivo, el resultado de elevarlo al cubo es positivo también
- Cuando \(X \) es negativo el resultado de elevarlo al cubo es negativo

Entonces, el contradominio también es el conjunto de los números reales, porque cuando \(X \) crece mucho los resultados de elevarlo al cubo también crece mucho. Esto mismo pasa con valores tanto positivos como negativos. La gráfica de la función se muestra a continuación:

Observa que la función \(f(x) = x^3 \) puede factorizarse como \(y = x \cdot x \cdot x \).

Para encontrar una raíz de la función debemos contestar a la pregunta: ¿Qué número multiplicado por sí mismo tres veces es igual a cero? La respuesta es obvia: el número cero multiplicado por sí mismo nos da cero, \((0)(0)(0) = 0 \). Es decir, \(x=0 \) es una raíz de la función, porque \(f(0) = 0 \).

Ejemplo 2

Grafica la siguiente función polinomial:

Calcula, además, sus raíces y su dominio y contradominio.

Empezamos calculando sus raíces. Para eso factorizamos la expresión:

\[y = x \cdot (x^2 - 1) = x(x + 1)(x - 1) \]
De esta factorización calculamos fácilmente las raíces de la función. Para que el producto de los tres factores sea cero se requiere que al menos uno de ellos sea cero. Tenemos tres casos: , , . Por lo tanto, la función corta al eje x en X=-1, X=0 y X=1.

De nuevo, el dominio es el conjunto de los números reales, por cerradura. Y el contradominio también, porque cuando los valores de x crecen **f(x) crece. Esto ocurre para valores positivos como negativos. La gráfica de esta función es la siguiente: *** RECORDAR f(x) es y

Ahora observa que la función evaluada en x=-1, o en x=0, o en x=1 hace que f(x)=0, y que la factorización queda:

Es decir, si r es una raíz de la función polinomial y = f(x) de grado n, entonces podemos factorizarla como:

\[y = f(x) = (x - r) \cdot g(x) \]

Donde g(x) es otra función polinomial de grado n-1.

Ejemplo 3

Describe el comportamiento y dibuja la gráfica de la siguiente ecuación:

\[f(x) = x^3 - 4x^2 + 5 \]

Solución:

Propiedades geométricas de la función polinomial de grado cuatro
Sean \(f(x) = x^4 \) y \(f(x) = -x^4 \), funciones cuyas gráficas se visualizan a continuación:

\[
\begin{align*}
\text{Ejercicios para resolver} \\
\text{Representa la gráfica de } f(x): \\
1) & \quad f(x) = \\
2) & \quad f(x) = \\
3) & \quad f(x) = \\
\text{Dibuja la gráfica de las siguientes funciones:} \\
a) & \quad f(x) = 1.5x^2 \\
b) & \quad f(x) = -0.5x^2 \\
\text{Escribe la ecuación de la función que resulta al trasladar el vértice de la parábola a un punto indicado.} \\
a) & \quad y = 1.5x^2 \\
& \quad A(2, -3) \\
b) & \quad y = -0.5x^2 \\
& \quad B(-2, 3) \\
\text{Representa gráficamente las parábolas siguientes:} \\
a) & \quad f(x) = 2x^2 - 8x + 2 \\
b) & \quad f(x) = -x^2 + 4x + 3 \\
\text{Indica qué tipo de función es y grafícala en tu cuaderno} \\
a) & \quad f(x) = x^3 + 1 \\
b) & \quad f(x) = x^3 - 3x \\
c) & \quad f(x) = 3 + 4x - 3x^2 - 6x^3
Actividad de aprendizaje 1

Una vez que ya conoces las diferentes aportaciones de la evolución, es momento de reconocer los diferentes postulados y aportaciones para establecer el acontecimiento histórico en relación con la ciencia.

Instrucciones: de manera individual elabora un mapa conceptual en el que incluyas las teorías de la evolución, sus principales postulados, hipótesis o aportaciones y los autores que las enunciaron.

Relaciona la columna “Aportaciones evolutivas” con su respectiva descripción, anotando en el paréntesis el número que corresponda.

<table>
<thead>
<tr>
<th>Aportaciones evolutivas</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>01. Teología</td>
<td>() Clasificó todos los organismos en una jerarquía lineal: la escala de la naturaleza.</td>
</tr>
<tr>
<td>02. Platón y Aristóteles</td>
<td>() Planteó que las especies van cambiando sus características a lo largo del tiempo de una manera gradual, se basa en dos suposiciones: Ley de uso y desuso y Ley de la herencia de los caracteres adquiridos.</td>
</tr>
<tr>
<td>03. Aristóteles</td>
<td>() Todas las especies habían sido creadas por Dios y que toda forma de vida permanecía inalterable desde ese momento.</td>
</tr>
<tr>
<td>04. Georges Louis LeClerc</td>
<td>() La teoría del uniformismo defiende la existencia de procesos naturales como la sedimentación, vulcanismo y la erosión, que actuaban de forma muy lenta, uniforme y sin interrupción debido a fuerzas que operaban sobre el relieve de la Tierra durante mucho tiempo, estas fuerzas se consideran fijas y constantes.</td>
</tr>
<tr>
<td>05. George Cuvier</td>
<td>() Todo objeto existente en la Tierra era un reflejo temporal simplemente de su forma ideal inspirada por esa divinidad.</td>
</tr>
<tr>
<td>06. Charles Lyell y James Hutton</td>
<td>() Propuso la teoría del catastrofismo. Esta teoría explica que los cambios biológicos y geológicos de nuestro planeta se debían a cambios violentos como las catástrofes.</td>
</tr>
<tr>
<td>07. Jean Baptiste Lamarck</td>
<td>() La creación original había un grupo reducido de especies, pero que conforme había pasado el tiempo se habían producido otras mediante procesos naturales.</td>
</tr>
</tbody>
</table>
Actividad de aprendizaje 2

Ahora conoces las aportaciones de Charles Darwin y Russel Wallace acerca de la teoría evolutiva.

Clasificación de los seres vivos

Actividad de aprendizaje 3

Es momento de concluir el bloque, para lo cual deberás realizar las siguientes actividades que te ayudarán a reforzar lo aprendido de la clasificación de los seres vivos.

Instrucciones: analiza con atención el material disponible en la Web La clasificación de los seres vivos, Clasificación de los seres vivos, Clasificación de los seres vivos – UNSE (pag. 15-17). Prepara tu presentación individual de la clasificación de los seres vivos según Carlos Linneo, Robert Whittaker y Carl Woese y grábala en video (20%).

Relaciona la columna de la izquierda respecto la columna de la derecha, anotando en el paréntesis el número que corresponda, se presentan a los científicos que clasificaron a los seres vivos y sus postulados y los criterios que utilizaron con las respectivas descripciones (20%).

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>01.</td>
<td>Carlos Linneo</td>
<td>() Se consideran las bacterias más antiguas, como las metanobacterias.</td>
</tr>
<tr>
<td>02.</td>
<td>Robert Whittaker</td>
<td>() Único reino con células procariotas unicelulares.</td>
</tr>
<tr>
<td>03.</td>
<td>Carl Woese</td>
<td>() Su nutrición es por absorción. () Diseñó un modelo de clasificación, basado en una serie de niveles jerárquicos (Reino-Filum-Clase-Orden-Familia-Género-Especie).</td>
</tr>
<tr>
<td>04.</td>
<td>Monera</td>
<td>() Son Heterótrofos.</td>
</tr>
<tr>
<td>05.</td>
<td>Protista</td>
<td>() Se encuentran los reinos Protista, Fungi, Plantae y Animalia.</td>
</tr>
<tr>
<td>06.</td>
<td>Fungi</td>
<td>() Propuso una agrupación de los seres vivos a partir de sus características comunes, organizando a los seres vivos en cinco grandes reinos: Monera, Protista, Fungi, Plantae y Animalia.</td>
</tr>
<tr>
<td>07.</td>
<td>Plantae</td>
<td>() Organismos eucariotas unicelulares.</td>
</tr>
<tr>
<td>08.</td>
<td>Animalia</td>
<td>() Son autótrofos.</td>
</tr>
<tr>
<td>09.</td>
<td>Eukaria</td>
<td>() Agrupó en tres grandes dominios a los cinco</td>
</tr>
<tr>
<td>10.</td>
<td>Arquea</td>
<td>()</td>
</tr>
</tbody>
</table>
reinos, denominándolos: arquea, bacteria y eukario, mediante el análisis de la secuencia de ARN ribosomal.

Física II

Ejercicios de ecuaciones de continuidad.

1) Por la entrada de una tubería cuya área es de 0.23 m² pasa un fluido con una velocidad de 0.8 m/s. ¿Cuál debe ser el área de la boquilla de la tubería para que alcance una velocidad de 1.5 m/s?

2) Por una tubería de 8 cm de diámetro fluye agua a razón de 4 m/s, en un punto determinado se reduce el diámetro a 4 cm. ¿Cuál es su velocidad en el tubo pequeño?

3) Por una tubería de 7.08 cm de diámetro circula agua a una velocidad cuya magnitud es de 1.4 m/s. Calcular la magnitud de la velocidad que llevará el agua al pasar por un estrechamiento de la tubería donde el diámetro es de 5 cm.

4) Un túnel de agua tiene una sección transversal circular que se restringe de un diámetro de 5.6 metros a la sección de prueba, que es de 0.8 metros de diámetro. Si la velocidad de flujo es de 4 m/s en el tubo de diámetro mayor, determine la velocidad del fluido en la sección de prueba.

5) Por una tubería de 0.25 m de diámetro circula agua a una velocidad de 4 m/s. ¿Cuál es la velocidad que llevará el agua, al pasar por un estrecho de la tubería donde el diámetro es de 0.08 m?

Actividad. Ejercicios de conversiones de escalas termométricas

1. Transforma 175 ° Kelvin a ° Celsius
2. Transforma 95 ° Fahrenheit a ° Celsius
3. Transforma 125 ° kelvin a ° Celsius
4. Transforma 32 ° Celsius a ° Fahrenheit
5. Transforma 65 ° Fahrenheit a ° Celsius
6. Transforma 200 ° Celsius a ° Kelvin
7. Transforma 73 ° Fahrenheit a ° Celsius
8. Transforma 49 ° Celsius a ° Kelvin
9. Transforma 26 ° Fahrenheit a ° Celsius
10. Transforma 290 ° Kelvin a ° Celsius
Recomendación para los siguientes ejercicios: Primero hay que pasarlo a ° Celsius, después a la escala que corresponda. Son dos operaciones a realizar cada ejercicio.

1. Transforma 50 ° Fahrenheit a ° Kelvin
2. Transforma 290 ° Kelvin a ° Fahrenheit
3. Transforma 35 ° Fahrenheit a ° Kelvin
4. Transforma 310 ° Kelvin a ° Fahrenheit
5. Transforma 60 ° Fahrenheit a ° Kelvin

Ejercicios de dilatación lineal, superficial y volumétrica

Instrucciones: Resuelve los siguientes ejercicios. Realiza las anotaciones necesarias en tu libreta o cuaderno con orden y limpieza. Registra y reflexiona tus respuestas para que después las comentes con tus compañeros de clase.

1) La longitud de un puente de concreto es de 1 km a una temperatura de 20°C. ¿Cuál es la longitud cuando la temperatura es de 38°C?
2) Se tienen tres barras de diferentes materiales a una misma temperatura inicial, realiza las operaciones necesarias y completa la tabla que se muestra a continuación.
4. Una lámina de cobre tiene un área de 0.32 m² a una temperatura de 10°C. ¿Cuál será su área si la temperatura aumenta a 32°C?
5. Una ventana de vidrio tiene una superficie de 3 m² a 20°C. ¿Cuál es la superficie de la ventana cuando la temperatura es de 35°C?

Actividad de electricidad

Elabora un listado de aparatos que funcionen por medio de electricidad que son útiles para la diversión, el hogar, la industria, el trabajo, la escuela, entre otros y completa la tabla.

Lee con mucha atención el texto de antecedentes históricos de la electricidad y elabora una línea de tiempo mencionando los descubrimientos más importantes en el área de la electricidad.

Realiza un listado de cinco materiales que sean conductores de electricidad, cinco materiales que sean semiconductores y cinco materiales que sean aislantes de electricidad.

Ejercicios de fuerza eléctrica (Ley de Coulomb)

1. Dibujar y determinar la fuerza eléctrica que se ejerce entre las cargas q1= 5 micro Coulomb y q2= 8 micro Coulomb distantes una de la otra 5 cm.
2. Dibujar y determinar la fuerza eléctrica que se ejerce entre las cargas q1= -8 mili Coulomb y q2= 2 mili Coulomb distantes una de la otra 2 cm.
3. Dibujar y determinar la fuerza eléctrica que se ejerce entre las cargas q1= 9 micro Coulomb y q2= -2 micro Coulomb distantes una de la otra 5 cm.
4. Dibujar y determinar la fuerza eléctrica que se ejerce entre las cargas q1= 7 mili
Coulomb y q2= 6 mili Coulomb distantes una de la otra 5 milímetros.
5. Dibujar y determinar la fuerza eléctrica que se ejerce entre las cargas q1= -4 mili Coulomb y q2= -3 mili Coulomb distantes una de la otra 8 milímetros.

Ejercicios de Intensidad de campo eléctrico

- Una carga eléctrica de 300 mC se coloca en un punto Q en un campo eléctrico y experimenta una fuerza de 0.003 N. ¿Cuál es la intensidad del campo eléctrico?

- Una carga de 6 μC produce una intensidad del campo eléctrico de 120000 N/C. ¿A qué distancia se encuentra de la carga de prueba?

- Determina la magnitud de la fuerza de una carga de q = 60 nC que produce intensidad del campo eléctrico de 50000 N/C.

- Realizar una investigación sobre los antecedentes de la electrodinámica y la Electrostática.

- Realizar un Glosario de los conceptos más importantes sobre los temas y conceptos que se encuentran en la electrostática y la Electrodinámica.

- Realizar dos o tres experimentos en casa basándose en los videos sobre experimentos de electrostática y electrodinámica aquí publicados, y enviar fotos como evidencia.

- Resolver los ejercicios propuestos en el anexo No. 7 apoyándose en los anexos del 1 al 6.
Literatura II

GLOSARIO:

- **Acecho.** En teatro, la escucha de la conversación de dos personajes por parte de un tercero oculto.
- **Acontecimiento patético.** En Aristóteles, parte de la fábula, es una acción que hace morir o sufrir (como las muertes en escena, los dolores vivísimos, las heridas y demás cosas de este tipo).
- **Acotación.** Nota del dramaturgo en una obra teatral para indicar la acción o el movimiento de los personajes. Cada una de las notas que se ponen en la obra teatral, relativas a la acción de los personajes y al servicio de la escena. Generalmente van en cursiva y entre paréntesis.
- **Acto.** División externa de una obra en partes más o menos iguales en función del tiempo y del desarrollo de la acción. Cada una de las partes principales en que se divide una obra teatral. La división de la obra en tres actos es una costumbre que se afianza en el naturalismo.
- **Actor santo.** El actor del teatro pobre de Grotowski. Este actor trabaja muchas horas y con disciplina, superando la fatiga y el dolor, para liberarse de todo lo que le separe de la disciplina.
- **Agnición.** En el poema dramático, reconocimiento de una persona cuya identidad se ignoraba.
- **Ambigú.** Establecimiento para adquirir bebidas o comida situado en los pasillos de un cine o un teatro.
- **Amebeo.** Recitado en el que toman parte dos o más personas alternativamente. Es frecuente en las églogas.
- **Anagnórisis.** Elemento de la tragedia, es el momento del reconocimiento de los personajes entre sí o la toma de conciencia del origen del mal.
- **Anfiteatro.** En Roma, lugar público, que acogía espectáculos y juegos a partir del Siglo II a.C. Tenía forma circular u ovalada.
- **Antiteatro.** Término muy general empleado para designar una dramaturgia y un estilo de representación que niega todos los principios de la ilusión teatral. El término apareció en los años 50 del Siglo XX, en el momento de la aparición del Teatro del Absurdo.
- **Cámara.** Espacio dramático que se forma con un telón de fondo, bambalinas y patas del mismo color, que permiten un decorado simbólico a base de apliques y luces.
- **Candilejas.** Nombre antiguo de la línea de luces que se colocaban en el proscenio del teatro.
- **Característico.** Actor o actriz que en teatro representa papeles de personas de edad. En el Siglo de Oro se le conocía como “barba”.
- **Caracterización.** Arte de reproducir el personaje. En teatro, se refiere también a ese arte por parte del actor, gracias a la utilización del maquillaje y la indumentaria.
- **Catarsis.** Purificación que experimenta el espectador a causa de la contemplación de la obra teatral, especialmente la tragedia.
- **Comedia de capa y espada.** Característica del siglo de oro, en ella se representaban las costumbres caballerescas de la época.
- Comedia de carácter.- La comedia que representa personajes típicos como el avaro, el fanfarrón, el celoso, etc., y que busca caricaturizarlos.
- Comedia de costumbres.- Comedia que se basa en situaciones de la vida social ordinaria.
- Comedia de enredo.- Se caracteriza por la trama ingeniosa y complicada, con situaciones que parecen no tener salida.
- Comedia de figurón.- En el teatro del Siglo de Oro, la comedia en cuyo protagonista se pinta algún vicio ridículo y extravagante.
- Cuarta pared.- División imaginaria que cierra por la parte del público un decorado de tres costados.
- Decorado permanente.- Aquel cuyas partes principales permanecen fijas durante toda la representación de una obra de teatro.
- Epicarmo.- Escritor de comedia en Sicilia hacia el Siglo VI a.C.
- Epílogo.- Última parte de una comedia o en la que se representa una acción o se refieren sucesos consecuentes de la acción principal, que le dan remate.
- Episodio.- En Aristóteles, es una parte completa de la tragedia entre cantos completos del coro.
- Escena.- División de una pieza teatral, teniendo en cuenta las entradas y salidas de personajes. Lugar donde se realiza la representación teatral. Lugar donde ocurre la acción dramática. Por extensión, arte teatral.
- Escena compartida.- En el teatro, cualquier escena en la que los participantes disfrutan de la misma importancia en cuanto a colocación, iluminación, etc.
- Escena paralela.- En teatro, escena en la que los personajes no están en oposición o conflicto aparente.
- Farándula.- Ambiente relacionado con el teatro.
- Foro.- Fondo del escenario, parte opuesta a su embocadura.
- Foso.- En un teatro es la parte entre la primera fila de público y el escenario, generalmente por debajo del nivel de la sala, donde tocan los músicos.
- Gag.- Hecho o dicho sorprendente y gracioso en el transcurso de una acción, pero que no tiene consecuencias en el desarrollo de la misma.
- Gangarilla.- Agrupación de tres o cuatro actores, de los cuales uno era un muchacho que hacía los papeles femeninos. Actuaban en la calle y en cortijos.
- Hacer mutis.- Retirarse un actor de la escena.
- Hamartia.- En la tragedia, acción del héroe que pone en movimiento el proceso que conducirá a su perdición. Es un error trágico.
- Hybris.- En la tragedia, el orgullo y la obstinación del héroe que persevera a pesar de las advertencias y que se niega a claudicar.
- Monólogo.- Obra, o parte de ella, en la que solo habla un personaje.
- Mutis.- Retirada de la escena.
- Ñaque.- Agrupación de dos actores. Tenían un limitado repertorio de diálogos.
- Ópera.- Poema dramático cuyo texto es cantado con acompañamiento de orquesta y números de danza. Nació en Italia a finales del Siglo XVI y alcanzó su máximo esplendor en el XIX.
- Ópera bufá.- Ópera en que el libreto es cómico.
- Opereta.- Pieza teatral breve con escenas alternativamente cantadas y declamadas. Suele tener carácter alegre.
- Palliatae.- Comedias y tragedias romanas que imitaban la nueva comedia griega.
• Pallium.- Trajes griegos. Se usaban en las obras dramáticas que en Roma imitaban la nueva comedia griega.
• Rompimiento.- Telón con paso practicable más o menos central.
• Sainete.- Obra corta cómica o burlesca del teatro español clásico. Sirve de intermedio o entremés en los entreactos de las grandes obras. Presenta personajes populares muy tipificados, como en la Comedia del Arte. Sirve para relajar y divertir al público.// Pieza dramática jocosa y de carácter popular, de escasa duración.
• Satiras dramáticas.- Sátiras de los orígenes teatrales latinos que mezclaban cantos, música y mimos.
• Sayagués.- Dialecto artificial creado por los comediógrafos del Siglo de Oro para reflejar el habla rústica de los pastores.
• Singspiel.- Forma de la ópera cómica alemana en la que alterna la parte musical con los diálogos hablados y que se desarrolló en el Siglo XVII. Se inspira en la vida cotidiana de campesinos y burgueses. Tiene analogía con la zarzuela española.
• Sofrón de Siracusa.- (finales del Siglo V a.C.) Escribió mimos, que eran pequeñas escenas de la vida cotidiana, junto a su hijo Jenarco.
• Stanislavski, Konstantin.- Fundador del Teatro de Arte de Moscú en 1898, preocupado por convertir al actor en una fuerza teatral perfectamente ajustable a los deseos del director.
• TAS.- Siglas de Teatro de Agitación Social, que aparece en 1950.
• Teatralismo.- Nombre bajo el que caben todas las tendencias teatrales que no pretenden representar la realidad tal como es, sino deformarla mediante diversos sistemas para que el espectador la pueda captar mejor.
• Telar.- Parte superior del escenario de donde bajan o a donde suben los telones y bambalinas.
• Telón de foro.- Fondo del escenario. Telón o lienzo pintado que representa la parte del decorado más alejada del público.
• Tropos.- Origen del drama litúrgico, eran textos breves recitados o cantados en forma de diálogo y cuya muestra más antigua es del Siglo IX.
• Utilillaje.- Conjunto de útiles, objetos y complementos necesarios para la decoración de una escena teatral o cinematográfica.
• Utilería.- Objetos escénicos que los actores utilizan o manipulan a lo largo de la obra. Son numerosos en el teatro naturalista, que reconstruye un ambiente con todos sus elementos. Generalmente suelen ser de mano.
• Vodevil.- Del francés vaudeville, comedieta ligera, sin pretensiones intelectuales, que suele poseer un argumento ingenioso y cómico referido a infidelidades amorosas, con final feliz. Suele contener canciones y bailes. Es de fines del Siglo XVII.
• Zarzuela.- Composición dramática musical, recitada y cantada alternativamente, de ambiente español.
• Zuecos.- Calzado que vestían los actores en la comedia.
Actividad 1: Los alumnos realizan análisis crítico a partir de una línea del tiempo, entre la Historia de México y la Historia Universal (del año 1918 hasta el año 1939).

Actividad 2: Elaboración de cuadro comparativo con los aportes políticos y sociales que los gobiernos posrevolucionarios hicieron al México actual: Adolfo de la Huerta, Álvaro Obregón y Plutarco Elías Calles. Elaboración de un cuadro comparativo de los gobiernos de “El Maximato”.

Actividad 3: Investigación en fuentes confiables, alguna institución mexicana que haya surgido durante el período posrevolucionario que se estudió en el bloque. Puede pertenecer a cualquier ámbito de la vida nacional: político, social económico o cultural.

Actividad 4: Elaboración de un cartel artístico que muestre algún aspecto de la revolución mexicana o de los gobiernos posrevolucionarios que les haya interesado particularmente.

Actividad 5: El alumno realiza investigación en fuentes electrónicas y bibliográficas sobre el tema “La expropiación petrolera”. Elabora un ensayo, en el que argumente como esa institución influyó en el desarrollo del país y, en dado caso de la comunidad.

En conferencia virtual o video expone y analiza si la institución sigue vigente o si fue sustituida por otra similar y a qué se debió el cambio.
ACTIVIDAD 1

Crucigrama de las partes de la computadora

VERTICALES:
1. Significa Unidad Central de Proceso.
2. Dispositivo del siglo pasado para almacenar datos.
3. Parte de la computadora que sirve para ingresar datos.
4. Aparato para mover la flecha-curSOR.
5. Artefacto o dispositivo inventado por el hombre para facilitar el trabajo.

HORIZONTALS:
6. Enchufe para conectar la memoria USB.
7. Disco Compacto (Compact Disc) utilizado para guardar información.
8. Aparato donde ves lo que hace o los programas de la computadora.

ACTIVIDAD 2

ESCRIBE DEBAJO DE CADA IMAGEN, EL NOMBRE DE LOS SIGUIENTES SISTEMAS OPERATIVOS:
ACTIVIDAD 3

RESPONDE: OBSERVA LA IMAGEN, Y EXPLICA ¿QUÉ TE DA A ENTENDER?

ACTIVIDAD 4

MANTENIMIENTO DE COMPUTADORES

1. Cuadro comparativo de tipos de mantenimiento.

<table>
<thead>
<tr>
<th>MANTENIMIENTO DE COMPUTADORES</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREVENTIVO</td>
</tr>
<tr>
<td>El mantenimiento preventivo es el destinado a la conservación de equipos o instalaciones mediante realización de revisiones y reparaciones que garanticen su buen funcionamiento y fiabilidad. El mantenimiento preventivo se realiza en equipos en condiciones de funcionamiento.</td>
</tr>
<tr>
<td>CORRECTIVO</td>
</tr>
<tr>
<td>Es aquel que actúa cuando la falla o avería ya se encuentra existente en el sistema. Por lo tanto, mientras no exista ningún fallo o error, el mantenimiento será nulo. Tiene como objetivo el restablecer el sistema. También consiste en la reparación de alguno de los componentes de la computadora, puede ser una soldadura pequeña, el cambio total de una tarjeta (corriente, video, SMMS de memoria, entre otras), o el cambio total de algún dispositivo periférico como el ratón, teclado, monitor, etc.</td>
</tr>
</tbody>
</table>

VENTAJAS
- Bajo costo en relación con el mantenimiento preventivo.
- Reducción importante del riesgo por fallas o fracasos.
- Reduce la probabilidad de paros imprevistos.
- Permite llevar un mejor control y planeación sobre el propio mantenimiento a ser aplicado en los equipos.

VENTAJAS
- Confiabilidad, los equipos operan en mejores condiciones de seguridad, ya que se conoce su estado, y sus condiciones de funcionamiento.
- Mayor duración de los equipos e instalaciones.
- Uniformidad en la carga de trabajo para el personal del mantenimiento debido a una programación de actividades.
- Menor costo de reparaciones.

DESVENTAJAS
- Entre sus pocos desventajas se encuentran:
 - Se requiere tanto de experiencia del personal de mantenimiento como de las recomendaciones del fabricante para hacer el programa de mantenimiento a los equipos.
 - No permite determinar con exactitud el desgaste o depreciación de las piezas de los equipos.

DESVENTAJAS
- Es muy probable que se originen al menos una de las siguientes:
 - El predio puede ser muy costoso, lo cual podría afectar a la hora de comprar los repuestos de recursos en el momento que se necesiten.
 - No podemos asegurar el tiempo que tarda en repararse dichas fallas.
ACTIVIDAD 5

Red inalámbrica – Red alámbrica (cableada)

ACTIVIDAD 6

GLOSARIO DE TÉRMINOS INFORMÁTICOS

INVESTIGA EL SIGNIFICADO DE LAS SIGUIENTES PALABRAS:

1. SOFTWARE:
2. HARDWARE:
3. SISTEMA OPERATIVO (SO):
4. LINUX:
5. EMBEBIDO:
6. ORDENADOR:
7. USB (SON SIGLAS):
8. FORMATEAR:
9. DISCO DURO:
10. MEMORIA RAM:
9. Proceso de evaluación

Dicho proceso queda a criterio de cada docente, a continuación, se plantean algunas propuestas de evaluación a manera de sugerencia.

Matemáticas IV

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Momento de evaluación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ejercicios de aprendizaje funciones de grado 1</td>
<td>Sumativa</td>
</tr>
<tr>
<td>Ejercicios de aprendizaje funciones de grado 2</td>
<td>Sumativa</td>
</tr>
<tr>
<td>Ejercicios de aprendizaje funciones de grado 3</td>
<td>Sumativa</td>
</tr>
<tr>
<td>Cuestionario final</td>
<td>Sumativa</td>
</tr>
</tbody>
</table>

Biología II

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Momento de evaluación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mapa conceptual de teorías evolutivas</td>
<td>Sumativa</td>
</tr>
<tr>
<td>Asociación de conceptos, teorías evolutivas</td>
<td>Sumativa</td>
</tr>
<tr>
<td>Exposición postulados Darwin – Wallace</td>
<td>Sumativa</td>
</tr>
<tr>
<td>Asociación de conceptos clasificación de seres vivos</td>
<td>Sumativa</td>
</tr>
<tr>
<td>Exposición de clasificación de los seres vivos</td>
<td>Sumativa</td>
</tr>
</tbody>
</table>

Física II

Rúbrica para evaluar ejercicios de ecuación de continuidad, conversiones de escalas termométricas, dilatación lineal, superficial y volumétrica, Ley de Coulomb y Campo Eléctrico

Alumno: ___ grupo: ___________

<table>
<thead>
<tr>
<th>Rubros Fases de solución</th>
<th>Bien(5%)</th>
<th>Regular(3%)</th>
<th>Insuficiente(1%)</th>
<th>calificación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datos</td>
<td>En todos los casos los datos están correctamente identificados y determinado su significado.</td>
<td>En todos los casos los datos están correctamente identificados, pero no siempre está determinado su significado.</td>
<td>No en todos los casos los datos están correctamente identificados.</td>
<td></td>
</tr>
<tr>
<td>Justificación</td>
<td>La resolución de todos los</td>
<td>La resolución de casi todos los</td>
<td>La resolución de casi</td>
<td></td>
</tr>
<tr>
<td>problemas incluye explicaciones para facilitar la lectura y comprensión.</td>
<td>problemas incluye explicaciones para facilitar la lectura y comprensión.</td>
<td>ninguno de los problemas incluye explicaciones; no se facilita la lectura y comprensión.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aplicación del método</td>
<td>El método se ha utilizado correcta y ordenadamente con todos sus pasos en todos los problemas.</td>
<td>El método se ha utilizado correcta y ordenadamente con todos sus pasos en casi todos los problemas.</td>
<td>El método no se ha utilizado correctamente en casi ningún problema.</td>
<td></td>
</tr>
<tr>
<td>Resultados</td>
<td>Los resultados de todos los problemas planteados son totalmente correctos.</td>
<td>Los resultados de todos los problemas planteados son correctos, con pequeños errores de cuentas o de notación.</td>
<td>El resultado de algún problema es incorrecto con gran error de cuentas o de notación.</td>
<td></td>
</tr>
</tbody>
</table>

RÚBRICA PARA EVALUAR LISTADO DE MATERIALES ELÉCTRICOS Y CLASIFICACIÓN DE MATERIALES

ALUMNO: __
GRUPO: __________________

<table>
<thead>
<tr>
<th>Categoría</th>
<th>1%</th>
<th>0.8%</th>
<th>0.5%</th>
<th>PONDERACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrega de trabajo</td>
<td>La entrega fue realizada en el plazo acordado.</td>
<td>La entrega fue realizada fuera del plazo acordado pero con justificación oportuna.</td>
<td>La entrega fue realizada fuera del plazo acordado pero con justificación inoportuna.</td>
<td></td>
</tr>
<tr>
<td>Introducción</td>
<td>Plantea clara y ordenadamente el tema del trabajo y su importancia.</td>
<td>Plantea clara y ordenadamente pero muy breve el tema del trabajo y su importancia.</td>
<td>Plantea pero de manera confusa el tema del trabajo y su importancia.</td>
<td></td>
</tr>
</tbody>
</table>
Calidad de la información

<table>
<thead>
<tr>
<th>Clase</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Claramente relacionada con el tema principal y proporciona varias ideas secundarias y ejemplos.</td>
<td>La información da respuesta a las preguntas principales y da una o dos ideas secundarias y ejemplos.</td>
</tr>
<tr>
<td>Da respuesta a las preguntas principales, pero no da ideas secundarias y ejemplos.</td>
<td></td>
</tr>
</tbody>
</table>

Organización

<table>
<thead>
<tr>
<th>Clase</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Está muy bien organizada con párrafos bien redactados y subtítulos.</td>
<td>La información está organizada con párrafos bien redactados.</td>
</tr>
<tr>
<td>Está organizada, pero los párrafos no están bien redactados.</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL

Literatura II

Actividad 1 Sopa de letras
Actividad 2 Cuadro comparativo
Actividad 3 Cuadro de Análisis
Actividad 4 Texto dramático

Historia de México II

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Momento de evaluación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actividad 01.</td>
<td>Sumativa</td>
</tr>
<tr>
<td>Actividad 02. Lista de cotejo cuadro comparativo.</td>
<td>Sumativa</td>
</tr>
<tr>
<td>Actividad 03. Rúbrica de investigación.</td>
<td>Sumativa</td>
</tr>
<tr>
<td>Actividad 04. Lista de cotejo de cartel.</td>
<td>Sumativa</td>
</tr>
<tr>
<td>Actividad 05. Rúbrica de investigación.</td>
<td>Sumativa</td>
</tr>
<tr>
<td>Actividad 06. Rúbrica de plenaria virtual.</td>
<td>Sumativa</td>
</tr>
</tbody>
</table>
Formación para el trabajo: Tecnologías de la Información y Comunicación. Mantenimiento y Redes de Cómputo.

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Momento de Evaluación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actividad 01</td>
<td>Sumativa</td>
</tr>
<tr>
<td>Actividad 02</td>
<td>Sumativa</td>
</tr>
<tr>
<td>Actividad 03</td>
<td>Sumativa</td>
</tr>
<tr>
<td>Actividad 04</td>
<td>Sumativa</td>
</tr>
<tr>
<td>Actividad 05</td>
<td>Sumativa</td>
</tr>
<tr>
<td>Actividad 06</td>
<td>Sumativa</td>
</tr>
</tbody>
</table>
Referencias

Matemáticas IV

Biología II

Física II

Antecedentes electricidad.
Telebachillerato Comunitario. *Física II*. Primera edición 2014. Impreso en México

Conceptos básicos de electricidad.
Telebachillerato Comunitario. *Física II*. Primera edición 2014. Impreso en México

Ley de Coulomb.
Telebachillerato Comunitario. *Física II*. Primera edición 2014. Impreso en México

Carga eléctrica y electrodinámica.

Literatura II

https://obrasdeteatrocortas.net/mario-y-marta-quieren-robar/
https://drive.google.com/drive/folders/12Pf67Y85uCBldZKkGlylfE7wHavco-Gu
https://literaturaone.weebly.com/contenido

Historia de México II

Formación para el trabajo: Tecnologías de la Información y Comunicación
Mantenimiento y Redes de Cómputo

Dzul, i. m. (2011). Informática cuarto semestre. Yucatán: Colegio de Bachilleres del estado de Yucatán.
Anexos

Matemáticas

Ejercicios resueltos:

En cada caso haz una tabla de valores y comprueba que los puntos obtenidos son de la gráfica.

a) \(f(x)=3 \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>-2</td>
<td>3</td>
</tr>
</tbody>
</table>

b) \(f(x)=-2x+3 \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>-2</td>
<td>3</td>
</tr>
</tbody>
</table>

c) \(f(x)=x^2-x+2 \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>-2</td>
<td>3</td>
</tr>
</tbody>
</table>
Respuestas:

a) Se trata de una función polinomial impar, con coeficiente principal positivo \(a_n = 1 \), por tanto, la gráfica se extiende desde la parte de abajo del eje x hasta la parte de encima de éste. Dado que el término independiente es 1, la gráfica corta al eje Y en el punto \((0, 1)\). Su gráfica es:

![Gráfica 1]

b) Se trata de una función polinomial impar, con coeficiente principal positivo \(a_n = 1 \), por tanto, la gráfica se extiende desde la parte de abajo del eje x hasta la parte de encima de éste. Dado que el término independiente es 0, la gráfica pasa por el origen \((0, 0)\). Su gráfica es:

![Gráfica 2]

c) Se trata de una función polinomial impar, con coeficiente principal negativo \(a_n = -6 \), por tanto, la gráfica se extiende desde la parte de arriba del eje x hasta la parte de abajo de éste. Dado que el término independiente es 3, la gráfica corta al eje Y en el punto \((0, 3)\).

![Gráfica 3]
Anexo 1
ECUACIONES Y UNIDADES

ECUACIONES
F= fuerza de atracción o repulsión
Q= carga eléctrica
Q'= otra carga eléctrica
Tg= tangente
E= Intensidad de la corriente
q= carga positiva pequeña
d = distancia r= distancia
K= constante de la ley de Coulomb para cargas eléctricas 9x10^9 Nm^2/C^2.

UNIDADES
m= metro
cm= centímetro
s= segundo
s^2= segundo cuadrado
kg= kilogramo
g= gramo
N= Newton
J= Joule
W= watt
µW= microwatt
C= coulomb
mC= milicoulomb x10^-3
µC= microcoulomb x10^-6
nC= nanocoulomb x10^-9
V= volt
E= erg
A= Ampere
Ω= ohm
cd= candela
C= capacitancia
dB= decibel
E= Iluminación
h= hora
I= Intensidad Luminosa
kW= kilowatt
kcal= kilocaloría

(1) algunos autores utilizan la letra (d) o la letra (r) para expresar la distancia.

Anexo 2
Fórmulas para utilizar en
LEY DE COULOMB
F= \frac{K q_1 q_2}{r^2}

CAMPO ELÉCTRICO
E = \frac{F}{q}
INTENSIDAD DEL CAMPO ELÉCTRICO

\[E = \frac{F}{q} \]

POTENCIAL ELÉCTRICO

\[V = \frac{T}{q} \]

INTENSIDAD DE LA CORRIENTE ELÉCTRICA

\[I = \frac{q}{T} \]

LEY DE OHM

\[I = \frac{V}{R} \]

Anexo 3
LEY DE COULOMB

Ejemplo No. 1

Una carga de \(-3 \, \mu C\) se coloca a 100 mm de una carga de \(+3 \, \mu C\). Calcular la fuerza entre estas dos cargas.

Datos

\[
\begin{align*}
q &= -3 \, \mu C = -3 \times 10^{-6} \, C \\
q &= +3 \, \mu C = +3 \times 10^{-6} \, C \\
r &= 100 \, mm = 100 \times 10^{-3} \, m = 0.1 \, m \\
F &= ? \\
K &= 9 \times 10^9 \, Nm^2/C^2
\end{align*}
\]

Fórmulas y desarrollo

\[
F = \frac{K \, q_1 \, q_2}{r^2}
\]

\[
F = \left(9 \times 10^9 \, Nm^2/C^2\right) \left(-3 \times 10^{-6} \, C\right) \left(+3 \times 10^{-6} \, C\right) \\
\left(0.1\right)^2
\]

\[
F = 81 \times 10^9 \, Nm^2/C^2 \\
1 \times 10^{-2} \, m^2
\]

\[F = 8.1 \, N \]

Esta es una fuerza de atracción porque las cargas tienen signos opuestos

Ejemplo No. 2

Dos cargas, \(q_1 = -8 \, \mu C\) y \(q_2 = +12 \, \mu C\) son colocados a 120 mm de distancia en el aire.
¿Cuál es la fuerza resultante en una tercera carga \(q_3 = -4 \, \mu C \) colocada a la mitad del camino entre las dos cargas?

<table>
<thead>
<tr>
<th>(q_1)</th>
<th>6 cm</th>
<th>(q_2)</th>
<th>6 cm</th>
<th>(q_3)</th>
</tr>
</thead>
</table>

Datos
- \(q = -8 \, \mu C = -8 \times 10^{-6} \, C \)
- \(q_2 = +12 \, \mu C = +12 \times 10^{-6} \, C \)
- \(q_3 = -4 \, \mu C = -4 \times 10^{-6} \, C \)
- \(r = 120 \, mm = 120 \times 10^{-3} \, m = 0.12 \, m \)
- \(F = ? \)

\[K = 9 	imes 10^9 \, Nm^2/C^2 \]

\[r_{1x2} = 0.12 \, m/2 = 0.06 \, m \]

\[r_{2x3} = 0.12 \, m/2 = 0.06 \, m \]

Anexo No. 4

Fórmula y desarrollo

La fuerza en \(q_3 \) debida a \(q_1 \) se dirige hacia la derecha y se calcula a partir de la Ley de Coulomb.

\[F = K \, q_1 \, q_3 \, \frac{1}{r_{1x2}^2} \, \frac{1}{a \, 3} \]

\[F = (9 \times 10^9 \, Nm^2/C^2) \times (8 \times 10^{-6} \, C) \times (4 \times 10^{-6} \, C) \times (0.06 \, m)^2 \]

\[F = 288 \times 10^{-3} \, Nm^2C^2/C^2 \]

\[36 \times 10^{-4} \, m^2 \]

\[F = 80 \, N \, \text{(Repulsión hacia la derecha)} \]

\[F = K \, q_2 \, q_3 \, \frac{1}{r_{2x3}^2} \, \frac{1}{a \, 3} \]

\[F = (9 \times 10^9 \, Nm^2/C^2) \times (12 \times 10^{-6} \, C) \times (4 \times 10^{-6} \, C) \times (0.06 \, m)^2 \]

\[F = 432 \times 10^{-3} \, Nm^2C^2/C^2 \]

\[36 \times 10^{-4} \, m^2 \]

\[F = 120 \, N \, \text{(Repulsión hacia la derecha)} \]

La fuerza resultante \(F \) es la suma vectorial de \(F_1 \) y \(F_2 \).

\[F = F_1 + F_2 \]

\[F = 60 \, N + 120 \, N \]

\[F = 200 \, N \, \text{(Dirigida a la derecha)} \]
Nótese que los signos de las cargas solamente se usaron para determinar la dirección de las fuerzas y su magnitud; no se sustituyeron en los cálculos.

Campo eléctrico

Una carga de 2×10^{-6} C colocada en un campo eléctrico experimenta una fuerza de 8×10^{-4} N. ¿Cuál es la magnitud de la intensidad del campo eléctrico?

Datos
q = 2×10^{-6} C
F = 8×10^{-4} N
E = ?

Anexo No. 5

Fórmula y desarrollo
E = F/q
F = 8×10^{-4} N
2×10^{-6} C

F = 4×10^{-2} N/C

Intensidad del campo eléctrico

Ejemplo

Una carga de 25μC se coloca en un determinado punto en el que la intensidad del campo eléctrico tiene un valor de 5×10^4 N/C. ¿Cuál es el valor de la fuerza que actúa sobre ella?

Datos
q = 2μC = 2×10^{-6} C
E = 5×10^4 N/C
F = ?

Fórmula y desarrollo

E = F/q
F = Eq
F = (5×10^4 N/C) (2×10^{-6} C) = 1×10^{-3} N
F = 1×10^{-3} N
Potencial eléctrico

Ejemplo
Una carga de 5 µC se coloca en un determinado punto de un campo eléctrico y adquiere una energía potencial de 25×10^{-6} J. ¿Cuál es el valor del potencial eléctrico en ese punto?

Datos

$q = 5 \mu C = 5 \times 10^{-6} \text{ C}$
$E_p = 25 \times 10^{-6} \text{ J}$

Fórmula y desarrollo

$E = E_p/q$

$F = 25 \times 10^{-6} \text{ N}$
$5 \times 10^{-6} \text{ C}$

$F = 5 \text{ V}$

Anexo No. 6

LEY DE OHM

Ejemplo

La diferencia de potencial de un calentador eléctrico es de 80 V cuando la corriente eléctrica es de 6 A. Calcular

a) La resistencia al paso de la corriente
b) La corriente eléctrica si el voltaje se incrementa a 120 V

Datos

a) $V = 80 \text{ V}$
$I = 6 \text{ A}$

$b) R = ?$

Fórmula y desarrollo

$R = V/I$

Sustituyendo

a) $R = 80 \text{ V} / 6 \text{ A} = 13.3 \Omega$

b) $I = V/R$

Sustituyendo

$I = 120 \text{ V} / 13.3 \Omega$
$I = 9 \text{ A}$
Ley de COULOMB
1. Una carga de -5 µC se coloca a 130 mm de una carga de +6 µC. Calcular la fuerza entre estas dos cargas.
Respuesta:

2. Calcular la fuerza eléctrica entre dos cargas cuyos valores son q1= 2 milicoulombs, q2= 4 milicoulombs, al estar separadas en el vacío por una distancia de 30 cm.
Respuesta= 8 X10^5 N

3. Determinar el valor de la fuerza eléctrica entre dos cargas cuyos valores son qi= 5 µC q2= -4 µC al estar separadas en el vacío a una distancia de 20 cm.
Respuesta: F= 4.5 N

Intensidad del campo eléctrico
1. Una carga de prueba de 3 X 10^{-7} C recibe una fuerza horizontal hacia la derecha de 2 X 10^{-4} N, ¿Cuál es el valor de la Intensidad del campo eléctrico en el punto donde está colocada la carga de prueba?

Resultado: 6.66 X 10^2 N/C

2. Calcular la Intensidad del campo eléctrico a una distancia de 50 cm de una carga de 4 µC.

Resultado= 1.44 X 10^5 N/C

Nota: en el caso de este problema se utiliza la siguiente fórmula

E= K q (Recordemos que la K es una constante por lo tanto conserva su mismo valor)
Créditos

Matemáticas IV
Ing. Carlos Fernando Ruíz Rincón
CEMSaD 321 Arroyo Delicias
Coordinación de Zona Sierra Fronteriza

Biólogía II
Ing. César Antonio Au Cárdenas
CEMSaD 289 Nueva Libertad
Coordinación de Zona Sierra Fronteriza

Física II
Ing. Felipe Grajales Gumeta
Plantel 22Yajalón
Coordinación de Zona Selva Norte

Ing. Jorge Luis Gutiérrez López
CEMSaD 55 La Gloria
Coordinación de ZonaCentro Norte

Literatura II
Lic. Lenin Castillejos Zambrano
Plantel 77 José María Pino Suárez
Coordinación de Zona Istmo Costa

Formación para el trabajo: Mantenimiento y Redes de Cómputo
Lic. Ariana de Jesús Gutiérrez Sánchez
CEMSaD 97 Río Blanco
Coordinación de Zona Sierra Fronteriza

Historia de México II
Lic. Guillermo de Jesús Cruz Reyes

Junio 2020
Oficina de Academias del Departamento de Capacitación y Profesionalización Docente

Mtra. Magda Patricia Díaz Molina
Mtra. Ma. del Rosario Cruz Rincón
Mtra. Carolina Solana Villanueva
Dra. Krizia Diane Chávez Hernández
Dr. Raúl Neftalí Vázquez Escobar
Mtra. Flor Alicia Gómez González
Mtra. Yuridiana Rizo Montes
Mtro. Edgar Raussel Solórzano Martínez

Oficina de Tecnologías del Departamento de Capacitación y Profesionalización

Mtro. Pablo Raúl Ramírez Pola

Junio 2020